{"title":"Deficiency of UBE3D in mice leads to severe embryonic abnormalities and disrupts the mRNA of Homeobox genes via CPSF3.","authors":"Yiwei Mi, Lu Yan, Yu Wu, Yufang Zheng","doi":"10.1038/s41420-025-02387-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neurulation is a crucial event during vertebrate early embryogenesis, and abnormalities in this process can result in embryonic lethality or congenital disorders, such as neural tube defects. Through our previous phenotypic-driven screening in mice, we have identified UBE3D as a key factor for the neurulation process. By generating Ube3d knockout mice using CRISPR/Cas9 technology, we observed that homozygous mice exhibited severe growth retardation and malformation, ultimately dying between E10.5 to E11.5. In contrast to their wild-type and heterozygote littermates, homozygous embryos displayed small heads and unturned caudal neural tubes at E9.5. Our in situ hybridization and immunofluorescence experiments revealed high expression of UBE3D in the forebrain, neural tube, and heart at E9.5-10.5. Furthermore, RNA-seq analysis of the E10.5 embryos demonstrated that deficiency in UBE3D resulted in the downregulation of multiple Homeobox genes, including those specifically expressed in the forebrain and lumbosacral regions. We also discovered that UBE3D interacts with CPSF3, which is an endonuclease essential for the pre-mRNA 3' end process. UBE3D could de-ubiquitinate CPSF3, and a deficiency of UBE3D leads to reduced levels of CPSF3 in both mouse and human cells. Overexpression of dominant negative mutants of CPSF3 was found to partially reduce mRNA levels of several Homeobox genes. In summary, our findings highlight that UBE3D is critical for early embryonic development in mice.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"99"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02387-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurulation is a crucial event during vertebrate early embryogenesis, and abnormalities in this process can result in embryonic lethality or congenital disorders, such as neural tube defects. Through our previous phenotypic-driven screening in mice, we have identified UBE3D as a key factor for the neurulation process. By generating Ube3d knockout mice using CRISPR/Cas9 technology, we observed that homozygous mice exhibited severe growth retardation and malformation, ultimately dying between E10.5 to E11.5. In contrast to their wild-type and heterozygote littermates, homozygous embryos displayed small heads and unturned caudal neural tubes at E9.5. Our in situ hybridization and immunofluorescence experiments revealed high expression of UBE3D in the forebrain, neural tube, and heart at E9.5-10.5. Furthermore, RNA-seq analysis of the E10.5 embryos demonstrated that deficiency in UBE3D resulted in the downregulation of multiple Homeobox genes, including those specifically expressed in the forebrain and lumbosacral regions. We also discovered that UBE3D interacts with CPSF3, which is an endonuclease essential for the pre-mRNA 3' end process. UBE3D could de-ubiquitinate CPSF3, and a deficiency of UBE3D leads to reduced levels of CPSF3 in both mouse and human cells. Overexpression of dominant negative mutants of CPSF3 was found to partially reduce mRNA levels of several Homeobox genes. In summary, our findings highlight that UBE3D is critical for early embryonic development in mice.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.