Siddharth Sunilkumar, Esma I Yerlikaya, Ashley VanCleave, Sandeep M Subrahmanian, Allyson L Toro, Scot R Kimball, Michael D Dennis
{"title":"REDD1-dependent GSK3β signaling in podocytes promotes canonical NF-κB activation in diabetic nephropathy.","authors":"Siddharth Sunilkumar, Esma I Yerlikaya, Ashley VanCleave, Sandeep M Subrahmanian, Allyson L Toro, Scot R Kimball, Michael D Dennis","doi":"10.1016/j.jbc.2025.108244","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence supports the role of an augmented immune response in the early development and progression of renal complications caused by diabetes. We recently demonstrated that podocyte-specific expression of stress response protein regulated in development and DNA damage response 1 (REDD1) contributes to activation of the pro-inflammatory transcription factor NF-κB in the kidney of diabetic mice. The studies here were designed to define the specific signaling events whereby REDD1 promotes NF-κB activation in the context of diabetic nephropathy. Streptozotocin (STZ)-induced diabetes promoted activation of glycogen synthase kinase 3β (GSK3β) in the kidney, which was prevented by REDD1 ablation. REDD1 was necessary and sufficient to enhance GSK3β activity in human podocyte cultures exposed to hyperglycemic conditions. GSK3β suppression prevented NF-κB activation and normalized the expression of pro-inflammatory factors in podocytes exposed to hyperglycemic conditions. In the kidneys of diabetic mice and in podocytes exposed to hyperglycemic conditions, REDD1-dependent GSK3β signaling promoted activation of the inhibitor of κB (IκB) kinase (IKK) complex upstream of NF-κB. GSK3β knockdown in podocytes exposed to hyperglycemic conditions reduced macrophage chemotaxis. Similarly, in diabetic mice treated with a GSK3 inhibitor, immune cell infiltration in the kidneys was reduced. Overall, the data support a model wherein hyperglycemia amplifies the activation of GSK3β in a REDD1-dependent manner, leading to canonical NF-κB signaling and an augmented renal immune response in diabetic nephropathy.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108244"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108244","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidence supports the role of an augmented immune response in the early development and progression of renal complications caused by diabetes. We recently demonstrated that podocyte-specific expression of stress response protein regulated in development and DNA damage response 1 (REDD1) contributes to activation of the pro-inflammatory transcription factor NF-κB in the kidney of diabetic mice. The studies here were designed to define the specific signaling events whereby REDD1 promotes NF-κB activation in the context of diabetic nephropathy. Streptozotocin (STZ)-induced diabetes promoted activation of glycogen synthase kinase 3β (GSK3β) in the kidney, which was prevented by REDD1 ablation. REDD1 was necessary and sufficient to enhance GSK3β activity in human podocyte cultures exposed to hyperglycemic conditions. GSK3β suppression prevented NF-κB activation and normalized the expression of pro-inflammatory factors in podocytes exposed to hyperglycemic conditions. In the kidneys of diabetic mice and in podocytes exposed to hyperglycemic conditions, REDD1-dependent GSK3β signaling promoted activation of the inhibitor of κB (IκB) kinase (IKK) complex upstream of NF-κB. GSK3β knockdown in podocytes exposed to hyperglycemic conditions reduced macrophage chemotaxis. Similarly, in diabetic mice treated with a GSK3 inhibitor, immune cell infiltration in the kidneys was reduced. Overall, the data support a model wherein hyperglycemia amplifies the activation of GSK3β in a REDD1-dependent manner, leading to canonical NF-κB signaling and an augmented renal immune response in diabetic nephropathy.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.