Mahima Sharma, Nicholas Pudlo, Michael A Järvå, Arashdeep Kaur, Alan John, Laura Burchill, James P Lingford, Ruwan Epa, Palika Abayakoon, Nichollas E Scott, Johan P Turkenburg, Gideon J Davies, Eric C Martens, Ethan D Goddard-Borger, Spencer J Williams
{"title":"Sulfoglycolysis sustains Eubacterium rectale in low-fiber diets.","authors":"Mahima Sharma, Nicholas Pudlo, Michael A Järvå, Arashdeep Kaur, Alan John, Laura Burchill, James P Lingford, Ruwan Epa, Palika Abayakoon, Nichollas E Scott, Johan P Turkenburg, Gideon J Davies, Eric C Martens, Ethan D Goddard-Borger, Spencer J Williams","doi":"10.1016/j.jbc.2025.108320","DOIUrl":null,"url":null,"abstract":"<p><p>The production of short-chain fatty acids (SCFAs) by Firmicutes (Bacillota) within the human gastrointestinal tract is recognized as critical for gut health and the progression of a range of disease states. Firmicutes are the most diverse phylum of human gut bacteria and are highly studied, and are often specialized to degrade just a few polysaccharide substrates. Members of the Firmicutes include key bacteria that produce butyrate, an SCFA that is generally not produced by members of the other major phyla. Recently, it was shown that Eubacterium rectale, a widespread member of the Firmicutes belonging to the Clostridiales cluster XIVa, can grow on the unusual but ubiquitous plant-derived sugar SQ using a sulfoglycolytic sulfofructose transaldolase pathway. Here, we show that in addition to SQ, E. rectale can also grow on the SQ glycoside sulfoquinovosyl glycerol (SQGro). The 3D structure of the E. rectale sulfoquinovosidase (SftG) shares strong structural conservation with other carbohydrate active enzyme family GH31 SQases. Using sequence-similarity networks, we provide new biological context to a conserved domain of unknown function protein SftX belonging to DUF4867, which is conserved in the sulfoglycolytic sulfofructose transaldolase pathway, and determine its 3D structure. Finally, with the aid of a synthetic mini-human microbiome reconstituted in germ-free mice, we show that an SQ dietary supplement can rescue E. rectale from population crashes that occur upon switching from a high-fiber to a low-fiber, high-fat diet. This suggests that SQ or SQGro has potential as a prebiotic for promoting the maintenance of this important butyrate-producing bacterium within the colonic microbiota.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108320"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108320","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The production of short-chain fatty acids (SCFAs) by Firmicutes (Bacillota) within the human gastrointestinal tract is recognized as critical for gut health and the progression of a range of disease states. Firmicutes are the most diverse phylum of human gut bacteria and are highly studied, and are often specialized to degrade just a few polysaccharide substrates. Members of the Firmicutes include key bacteria that produce butyrate, an SCFA that is generally not produced by members of the other major phyla. Recently, it was shown that Eubacterium rectale, a widespread member of the Firmicutes belonging to the Clostridiales cluster XIVa, can grow on the unusual but ubiquitous plant-derived sugar SQ using a sulfoglycolytic sulfofructose transaldolase pathway. Here, we show that in addition to SQ, E. rectale can also grow on the SQ glycoside sulfoquinovosyl glycerol (SQGro). The 3D structure of the E. rectale sulfoquinovosidase (SftG) shares strong structural conservation with other carbohydrate active enzyme family GH31 SQases. Using sequence-similarity networks, we provide new biological context to a conserved domain of unknown function protein SftX belonging to DUF4867, which is conserved in the sulfoglycolytic sulfofructose transaldolase pathway, and determine its 3D structure. Finally, with the aid of a synthetic mini-human microbiome reconstituted in germ-free mice, we show that an SQ dietary supplement can rescue E. rectale from population crashes that occur upon switching from a high-fiber to a low-fiber, high-fat diet. This suggests that SQ or SQGro has potential as a prebiotic for promoting the maintenance of this important butyrate-producing bacterium within the colonic microbiota.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.