Maria Orfanoudaki, Lauren R H Krumpe, Shilpa R Shenoy, Jennifer Wilson, Tad Guszczynski, Curtis J Henrich, J Sebastian Temme, Jeffrey C Gildersleeve, Elisa Molina-Molina, Itziar Erkizia, Julià Blanco, Nuria Izquierdo-Useros, Fabio Montiero, Amilcar Tanuri, Elibio Rech, Barry R O'Keefe
{"title":"Isolation and structure elucidation of Dm-CVNH, a new cyanovirin-N homolog with activity against SARS-CoV-2 and HIV-1.","authors":"Maria Orfanoudaki, Lauren R H Krumpe, Shilpa R Shenoy, Jennifer Wilson, Tad Guszczynski, Curtis J Henrich, J Sebastian Temme, Jeffrey C Gildersleeve, Elisa Molina-Molina, Itziar Erkizia, Julià Blanco, Nuria Izquierdo-Useros, Fabio Montiero, Amilcar Tanuri, Elibio Rech, Barry R O'Keefe","doi":"10.1016/j.jbc.2025.108319","DOIUrl":null,"url":null,"abstract":"<p><p>An anti-HIV screening of natural product extracts resulted in the discovery of a new antiviral protein through bioassay-guided fractionation of an aqueous extract of the ascidian Didemnum molle. The protein was sequenced through a combination of tandem mass spectroscopy and N-terminal Edman degradation of peptide fragments after a series of endoproteinase digestions. The primary amino acid sequence and disulfide bonding pattern of the 102-amino acid protein were closely related to the antiviral protein cyanovirin-N (CV-N). This new CV-N homolog was named Dm-CVNH. Alphafold2 prediction resulted in a tertiary structure, highly similar to CV-N, comprised of two symmetrically related domains that contained five β-strands and two α-helical turns each. Dm-CVNH showed specificity for high mannose and oligomannose structures, bound to HIV-1 gp-120 and potently inactivated HIV in neutralization assays (EC<sub>50</sub> of 0.95 nM). Dm-CVNH inhibited infection in a SARS-CoV-2 live virus assays (EC<sub>50</sub> = 11-18 nM) and was shown to bind to the S1 domain of SARS-CoV-2 Spike glycoprotein. Dm-CVNH behaved in a manner similar to CV-N, binding with a 2:1 stoichiometry to Spike (both to WH-1 and Omicron variants) and preferring the Omicron variant (Kd 42 nM) to original WH-1 (Kd = 89 nM) Spike. This sensitivity to emergent strains was mirrored in viral neutralization assays where Dm-CVNH potently inhibited the infection of Omicron strains XBB.1.16 and JN.1 (IC<sub>50</sub> = 11-18 nM).</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108319"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108319","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An anti-HIV screening of natural product extracts resulted in the discovery of a new antiviral protein through bioassay-guided fractionation of an aqueous extract of the ascidian Didemnum molle. The protein was sequenced through a combination of tandem mass spectroscopy and N-terminal Edman degradation of peptide fragments after a series of endoproteinase digestions. The primary amino acid sequence and disulfide bonding pattern of the 102-amino acid protein were closely related to the antiviral protein cyanovirin-N (CV-N). This new CV-N homolog was named Dm-CVNH. Alphafold2 prediction resulted in a tertiary structure, highly similar to CV-N, comprised of two symmetrically related domains that contained five β-strands and two α-helical turns each. Dm-CVNH showed specificity for high mannose and oligomannose structures, bound to HIV-1 gp-120 and potently inactivated HIV in neutralization assays (EC50 of 0.95 nM). Dm-CVNH inhibited infection in a SARS-CoV-2 live virus assays (EC50 = 11-18 nM) and was shown to bind to the S1 domain of SARS-CoV-2 Spike glycoprotein. Dm-CVNH behaved in a manner similar to CV-N, binding with a 2:1 stoichiometry to Spike (both to WH-1 and Omicron variants) and preferring the Omicron variant (Kd 42 nM) to original WH-1 (Kd = 89 nM) Spike. This sensitivity to emergent strains was mirrored in viral neutralization assays where Dm-CVNH potently inhibited the infection of Omicron strains XBB.1.16 and JN.1 (IC50 = 11-18 nM).
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.