{"title":"Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance.","authors":"Xiaomin Yang, Chengcheng Ji, Shuang Wang, Qinghua Yang, Jiawen Li, Shipeng He, Qiuying Pang, Aiqin Zhang","doi":"10.1016/j.plaphy.2025.109562","DOIUrl":null,"url":null,"abstract":"<p><p>The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E. salsugineum, the sequence feature and phylogeny of EsbZIPs have been exhaustively described. Through the global detection on the transcriptional pattern of EsbZIPs under salt stress, it was found that EsbZIP51 is potentially involved in the positive regulation of salt response. The transgenic plants with heterologous expression of EsbZIP51 exhibited enhanced salt tolerance, as manifested by the healthier growth phenotype and increased capacity in maintaining ion and ROS homeostasis upon salt stress. DNA affinity purification sequencing revealed that a set of candidate genes targeted by EsbZIP51, and functional validation by dual-LUC assays showed EsbZIP51 can specifically bind to the promoter of EsNHX4 and regulates the gene expression, which is required for the modulation of ion balance under salt stress. Together, this study provides insight into the genomic information of EsbZIPs and uncovers a previously uncharacterized functional genes involved in plant salt tolerance.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109562"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109562","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E. salsugineum, the sequence feature and phylogeny of EsbZIPs have been exhaustively described. Through the global detection on the transcriptional pattern of EsbZIPs under salt stress, it was found that EsbZIP51 is potentially involved in the positive regulation of salt response. The transgenic plants with heterologous expression of EsbZIP51 exhibited enhanced salt tolerance, as manifested by the healthier growth phenotype and increased capacity in maintaining ion and ROS homeostasis upon salt stress. DNA affinity purification sequencing revealed that a set of candidate genes targeted by EsbZIP51, and functional validation by dual-LUC assays showed EsbZIP51 can specifically bind to the promoter of EsNHX4 and regulates the gene expression, which is required for the modulation of ion balance under salt stress. Together, this study provides insight into the genomic information of EsbZIPs and uncovers a previously uncharacterized functional genes involved in plant salt tolerance.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.