Eleonora Macchia, Anna Maria D'Erchia, Mariapia Caputo, Angelica Bianco, Claudia Leoni, Francesca Intranuovo, Cecilia Scandurra, Lucia Sarcina, Cinzia Di Franco, Paolo Bollella, Gaetano Scamarcio, Luisa Torsi, Graziano Pesole
{"title":"Rapid and Ultra-Sensitive SARS-CoV-2 Subgenomic RNA Detection Using Single-Molecule With a Large Transistor-SiMoT Bioelectronic Platform","authors":"Eleonora Macchia, Anna Maria D'Erchia, Mariapia Caputo, Angelica Bianco, Claudia Leoni, Francesca Intranuovo, Cecilia Scandurra, Lucia Sarcina, Cinzia Di Franco, Paolo Bollella, Gaetano Scamarcio, Luisa Torsi, Graziano Pesole","doi":"10.1002/aelm.202400908","DOIUrl":null,"url":null,"abstract":"The replication of Coronaviridae viruses depends on the synthesis of structural proteins expressed through the discontinuous transcription of subgenomic RNAs (sgRNAs). Thus, detecting sgRNAs, which reflect active viral replication, provides valuable insights into infection status. Current diagnostic methods, such as PCR-based assays, often involve high costs, complex equipment, and reliance on highly trained personnel. Additionally, their specificity can be compromised by technical limitations in kit design. While viral culture remains highly accurate, it is impractical for routine diagnostics. In this study, the single-molecule-with-a-large-transistor (SiMoT) technology is presented for detecting sgRNA encoding the nucleocapsid (N) protein in clinical samples. SiMoT incorporates a stable layer of complementary DNA strands on the sensing gate electrode, facilitating rapid, sensitive, and specific sgRNA detection. Among 90 tested samples, SiMoT achieved a diagnostic sensitivity of 98.0% and a specificity of 87.8%, delivering results within 30 min. This user-friendly platform requires minimal sample preparation and offers a cost-effective point-of-care (POC) diagnostic solution. With its demonstrated diagnostic accuracy and scalability, SiMoT represents a promising tool for detecting active viral replication in SARS-CoV-2 and other coronaviruses. It addresses the limitations of existing molecular and culture-based methods while enhancing accessibility to reliable diagnostics.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400908","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The replication of Coronaviridae viruses depends on the synthesis of structural proteins expressed through the discontinuous transcription of subgenomic RNAs (sgRNAs). Thus, detecting sgRNAs, which reflect active viral replication, provides valuable insights into infection status. Current diagnostic methods, such as PCR-based assays, often involve high costs, complex equipment, and reliance on highly trained personnel. Additionally, their specificity can be compromised by technical limitations in kit design. While viral culture remains highly accurate, it is impractical for routine diagnostics. In this study, the single-molecule-with-a-large-transistor (SiMoT) technology is presented for detecting sgRNA encoding the nucleocapsid (N) protein in clinical samples. SiMoT incorporates a stable layer of complementary DNA strands on the sensing gate electrode, facilitating rapid, sensitive, and specific sgRNA detection. Among 90 tested samples, SiMoT achieved a diagnostic sensitivity of 98.0% and a specificity of 87.8%, delivering results within 30 min. This user-friendly platform requires minimal sample preparation and offers a cost-effective point-of-care (POC) diagnostic solution. With its demonstrated diagnostic accuracy and scalability, SiMoT represents a promising tool for detecting active viral replication in SARS-CoV-2 and other coronaviruses. It addresses the limitations of existing molecular and culture-based methods while enhancing accessibility to reliable diagnostics.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.