Highly Efficient Spin-Orbit Torque Switching in a Topological Insulator/Chromium Telluride Heterostructure with Opposite Berry Curvature

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-02-10 DOI:10.1002/aelm.202400820
Kewen Zhang, Yuhang Wu, Jingyan Song, Yitian Guo, Xiaolun Cai, Long Cheng, Dongxing Zheng, Aitian Chen, Peng Li, Xixiang Zhang
{"title":"Highly Efficient Spin-Orbit Torque Switching in a Topological Insulator/Chromium Telluride Heterostructure with Opposite Berry Curvature","authors":"Kewen Zhang,&nbsp;Yuhang Wu,&nbsp;Jingyan Song,&nbsp;Yitian Guo,&nbsp;Xiaolun Cai,&nbsp;Long Cheng,&nbsp;Dongxing Zheng,&nbsp;Aitian Chen,&nbsp;Peng Li,&nbsp;Xixiang Zhang","doi":"10.1002/aelm.202400820","DOIUrl":null,"url":null,"abstract":"<p>Energy-efficient magnetization switching by current-induced spin-orbit torques drives the application of spintronics in memory and neural networks. Given the intrinsic strong spin-orbit coupling, topological insulators (TI) with spin-momentum locking are expected to be promising candidates for generating a significant spin-orbit torque compared to the heavy metal system. To achieve high charge-to-spin conversion efficiency, it is imperative to incorporate a ferromagnetic layer with low conductivity. In this study, a high spin-torque efficiency (β<sub><i>L</i></sub> =  12.9 × 10<sup>−6</sup>mT A<sup>−1</sup>cm<sup>2</sup>) and spin Hall conductivity (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>σ</mi>\n <mrow>\n <mi>S</mi>\n <mi>H</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>4.8</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mn>6</mn>\n </msup>\n <mfrac>\n <mi>ℏ</mi>\n <mrow>\n <mn>2</mn>\n <mi>e</mi>\n </mrow>\n </mfrac>\n <msup>\n <mi>Ω</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\sigma _{SH}} = 4.8 \\times {10^6}\\frac{\\hbar }{{2e}}{{{\\Omega}}^{ - 1}}{{\\mathrm{m}}^{ - 1}}$</annotation>\n </semantics></math>) are reported as being observed at 80 K in a Cr<sub>2</sub>Te<sub>3</sub>/(Bi<sub>0.5</sub>Sb<sub>0.5</sub>)<sub>2</sub>Te<sub>3</sub> bilayer. The magnetization switching induced by spin-orbit torque in a Cr<sub>2</sub>Te<sub>3</sub>/(Bi<sub>0.5</sub>Sb<sub>0.5</sub>)<sub>2</sub>Te<sub>3</sub> bilayer is observed. It is demonstrated that the hump-like feature in the anomalous Hall effect (AHE) resistance curve can be attributed to the presence of two magnetic phases in compressively strained chromium telluride grown on a <i>c</i>-Al<sub>2</sub>O<sub>3</sub> substrate using molecular beam epitaxy (MBE). The work holds the promise of propelling efficiency advancements in spintronic applications that leverage the unique properties of topological insulators.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 11","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400820","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400820","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy-efficient magnetization switching by current-induced spin-orbit torques drives the application of spintronics in memory and neural networks. Given the intrinsic strong spin-orbit coupling, topological insulators (TI) with spin-momentum locking are expected to be promising candidates for generating a significant spin-orbit torque compared to the heavy metal system. To achieve high charge-to-spin conversion efficiency, it is imperative to incorporate a ferromagnetic layer with low conductivity. In this study, a high spin-torque efficiency (βL =  12.9 × 10−6mT A−1cm2) and spin Hall conductivity ( σ S H = 4.8 × 10 6 2 e Ω 1 m 1 ${\sigma _{SH}} = 4.8 \times {10^6}\frac{\hbar }{{2e}}{{{\Omega}}^{ - 1}}{{\mathrm{m}}^{ - 1}}$ ) are reported as being observed at 80 K in a Cr2Te3/(Bi0.5Sb0.5)2Te3 bilayer. The magnetization switching induced by spin-orbit torque in a Cr2Te3/(Bi0.5Sb0.5)2Te3 bilayer is observed. It is demonstrated that the hump-like feature in the anomalous Hall effect (AHE) resistance curve can be attributed to the presence of two magnetic phases in compressively strained chromium telluride grown on a c-Al2O3 substrate using molecular beam epitaxy (MBE). The work holds the promise of propelling efficiency advancements in spintronic applications that leverage the unique properties of topological insulators.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有相反Berry曲率的拓扑绝缘体/碲化铬异质结构中的高效自旋-轨道转矩开关
电流诱导自旋轨道转矩的高效磁化开关驱动了自旋电子学在记忆和神经网络中的应用。鉴于其固有的强自旋-轨道耦合特性,具有自旋-动量锁定的拓扑绝缘体(TI)有望比重金属系统产生更大的自旋-轨道扭矩。为了实现高电荷自旋转换效率,必须加入低电导率的铁磁层。在本研究中,在80 K的温度下,在Cr2Te3/(Bi0.5Sb0.5)2Te3双分子层中观察到较高的自旋转矩效率(βL = 12.9 ×10−6mT a−1cm2)和自旋霍尔电导率(σS²H=4.8×106²²e²Ω−1²m−1 ${\sigma _{SH}} = 4.8 \times {10^6}\frac{\hbar }{{2e}}{{{\Omega}}^{ - 1}}{{\mathrm{m}}^{ - 1}}$)。在Cr2Te3/(Bi0.5Sb0.5)2Te3双分子层中观察到自旋-轨道转矩诱导的磁化开关。通过分子束外延(MBE)技术,在c-Al2O3衬底上生长的压缩应变碲化铬中存在两个磁相,证明了异常霍尔效应(AHE)电阻曲线的驼峰状特征。这项工作有望推动利用拓扑绝缘体独特性质的自旋电子应用的效率进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
MIM‐Diode‐Like Rectification in Lateral 1T/1H/1T‐MoS 2 Homojunctions via Interfacial Dipole Engineering Ferroelectric–Electrolyte Hybrid Gate Dielectrics for Organic Synaptic Transistors with Long‐Term Plasticity High-Performance and Energy-Efficient Sub-5 nm 2D Double-Gate MOSFETs Based on Silicon Arsenide Monolayers AI-Assisted Bioelectronics for Personalized Health Management Concurrent Sensing and Communications Based on Intelligent Metasurfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1