Wide binary evaporation by dark solitons: implications from the GAIA catalog

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2025-02-04 DOI:10.1088/1475-7516/2025/02/001
Qiming Qiu, Yu Gao, Haijun Tian, Kechen Wang, Zihang Wang and Xiangming Yang
{"title":"Wide binary evaporation by dark solitons: implications from the GAIA catalog","authors":"Qiming Qiu, Yu Gao, Haijun Tian, Kechen Wang, Zihang Wang and Xiangming Yang","doi":"10.1088/1475-7516/2025/02/001","DOIUrl":null,"url":null,"abstract":"An analytic calculation is given for binary star evaporation under the tidal perturbation from randomly distributed, spatially extended dark objects. In particular, the Milky Way's wide binary star population is susceptible to such disruption from dark matter solitons of comparable and larger sizes. We identify high-probability `halo-like' wide binaries in GAIA EDR3 with separations larger than 0.1 parsec. Survival of the farthest-separated candidates will provide a novel gravitational probe to dark matter in the form of solitons. In the case of dilute axion-like boson stars, the observational sensitivity extends into the axion mass range ma ∼ 10-17 -10-15eV.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"7 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/02/001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

An analytic calculation is given for binary star evaporation under the tidal perturbation from randomly distributed, spatially extended dark objects. In particular, the Milky Way's wide binary star population is susceptible to such disruption from dark matter solitons of comparable and larger sizes. We identify high-probability `halo-like' wide binaries in GAIA EDR3 with separations larger than 0.1 parsec. Survival of the farthest-separated candidates will provide a novel gravitational probe to dark matter in the form of solitons. In the case of dilute axion-like boson stars, the observational sensitivity extends into the axion mass range ma ∼ 10-17 -10-15eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Confronting new NICER mass-radius measurements with phase transition in dense matter and twin compact stars Wide binary evaporation by dark solitons: implications from the GAIA catalog Gravitational Faraday-Cartan effect beyond gravitomagnetism due to dark matter intrinsic spin Neural Networks for cosmological model selection and feature importance using Cosmic Microwave Background data Successful νp-process in neutrino-driven outflows in core-collapse supernovae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1