Regional constraint consistency contrastive learning for automatic detection of urinary sediment in microscopic images

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biocybernetics and Biomedical Engineering Pub Date : 2025-01-01 DOI:10.1016/j.bbe.2025.01.003
Fufei Li , Li Chen , Ge Song , Lianzheng Su , Shian Wang , Qiuyue Fu , Yongqi Nie , Peng Wang
{"title":"Regional constraint consistency contrastive learning for automatic detection of urinary sediment in microscopic images","authors":"Fufei Li ,&nbsp;Li Chen ,&nbsp;Ge Song ,&nbsp;Lianzheng Su ,&nbsp;Shian Wang ,&nbsp;Qiuyue Fu ,&nbsp;Yongqi Nie ,&nbsp;Peng Wang","doi":"10.1016/j.bbe.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>Diagnosing renal and urinary system illnesses usually entails analysing the sediment found in urine. The components in microscopic urine images are diverse and show high similarity, with low contrast due to noise, impeding the progress of automated urine analysis. In order to tackle this difficulty, we propose a region-constrained consistency contrastive learning approach for automated urine analysis. In the first stage, we tackle the complex overlap phenomena in microscopic urine images by innovating the Urine Sediment Paste (US-Paste) positive sample construction method based on supervised contrastive learning. This method uses label information to apply regional constraints and improves the performance of out-of-distribution detection. We also rebuilt the Global Guidance Module (GG Module) and the Enhanced Supervision Module(ES Module). The former improves contrast in urine sediment images by restoring important image details guided by an encoder–decoder structure, while the latter achieves strong feature consistency by combining the most pertinent feature responses from four sets of attention feature maps, which are further mapped via a projection network. In the second phase, we enhance the representations acquired in the initial phase by incorporating a linear classification layer. Our region-constrained consistency contrastive learning algorithm attained an average classification accuracy of 98.30%, precision of 98.33%, recall of 98.30%, and F1-score of 98.30% on the private dataset. Furthermore, in the public urine sediment dataset, the approach achieved an average classification accuracy of 96.19%, precision of 95.79%, recall of 96.19%, and F1-score of 95.94%. The public chromosomal dataset yielded an average classification accuracy of 95.46%, precision of 94.84%, recall of 95.47%, and F1-score of 95.15%. Our methodology surpasses the most advanced methods and demonstrates exceptional performance in urine analysis. This showcases the efficiency of our label-based regional limitations, the outstanding out-of-distribution detection performance of US-Paste, and the robust feature consistency achieved by the Guided Supervision Encoder (GS Encoder). This substantially enhances diagnostic efficiency for clinicians and significantly advances the progress of automated urine sediment analysis.</div></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"45 1","pages":"Pages 74-89"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521625000038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosing renal and urinary system illnesses usually entails analysing the sediment found in urine. The components in microscopic urine images are diverse and show high similarity, with low contrast due to noise, impeding the progress of automated urine analysis. In order to tackle this difficulty, we propose a region-constrained consistency contrastive learning approach for automated urine analysis. In the first stage, we tackle the complex overlap phenomena in microscopic urine images by innovating the Urine Sediment Paste (US-Paste) positive sample construction method based on supervised contrastive learning. This method uses label information to apply regional constraints and improves the performance of out-of-distribution detection. We also rebuilt the Global Guidance Module (GG Module) and the Enhanced Supervision Module(ES Module). The former improves contrast in urine sediment images by restoring important image details guided by an encoder–decoder structure, while the latter achieves strong feature consistency by combining the most pertinent feature responses from four sets of attention feature maps, which are further mapped via a projection network. In the second phase, we enhance the representations acquired in the initial phase by incorporating a linear classification layer. Our region-constrained consistency contrastive learning algorithm attained an average classification accuracy of 98.30%, precision of 98.33%, recall of 98.30%, and F1-score of 98.30% on the private dataset. Furthermore, in the public urine sediment dataset, the approach achieved an average classification accuracy of 96.19%, precision of 95.79%, recall of 96.19%, and F1-score of 95.94%. The public chromosomal dataset yielded an average classification accuracy of 95.46%, precision of 94.84%, recall of 95.47%, and F1-score of 95.15%. Our methodology surpasses the most advanced methods and demonstrates exceptional performance in urine analysis. This showcases the efficiency of our label-based regional limitations, the outstanding out-of-distribution detection performance of US-Paste, and the robust feature consistency achieved by the Guided Supervision Encoder (GS Encoder). This substantially enhances diagnostic efficiency for clinicians and significantly advances the progress of automated urine sediment analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
期刊最新文献
Regional constraint consistency contrastive learning for automatic detection of urinary sediment in microscopic images Imaging of retinal ganglion cells and photoreceptors using Spatio-Temporal Optical Coherence Tomography (STOC-T) without hardware-based adaptive optics Spatio-temporal matched filter adjustment for enhanced accuracy in brain responses classification Advancing eye disease detection: A comprehensive study on computer-aided diagnosis with vision transformers and SHAP explainability techniques Multi-scale neural networks classification of mild cognitive impairment using functional near-infrared spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1