Nanoencapsulated nitric oxide donor triggers a dose-dependent effect on the responses of maize seedlings to high light stress

IF 6.8 Q1 PLANT SCIENCES Plant Stress Pub Date : 2024-12-12 DOI:10.1016/j.stress.2024.100711
Diego G. Gomes , Bruno T. Sousa , Joana C. Pieretti , Roney H. Pereira , Wagner R. de Souza , Halley C. Oliveira , Amedea B Seabra
{"title":"Nanoencapsulated nitric oxide donor triggers a dose-dependent effect on the responses of maize seedlings to high light stress","authors":"Diego G. Gomes ,&nbsp;Bruno T. Sousa ,&nbsp;Joana C. Pieretti ,&nbsp;Roney H. Pereira ,&nbsp;Wagner R. de Souza ,&nbsp;Halley C. Oliveira ,&nbsp;Amedea B Seabra","doi":"10.1016/j.stress.2024.100711","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoencapsulation of nitric oxide (NO) donors provides sustained release of NO, prolonging its action on plants. Here, we evaluated the action of NO-releasing chitosan nanoparticles containing GSNO (S-nitrosoglutathione) on the protection of maize plants (<em>Zea mays</em> cv. Balu 787) against high light-induced stress. Experiment 1 was used to compare maize plants under different light intensities. Experiment 2 evaluated the protective effect of chitosan nanoparticles containing GSNO (NPNO) in different concentrations (200 or 400 µM). Experiment 3 compared the protective effect of NPNO to non-nanoencapsulated GSNO (NO) and nanoparticles without NO-releasing molecule (NP). In experiments 1 and 2, chlorophyll <em>a</em> fluorescence and gas exchange measurements were performed. In experiment 3, chlorophyll <em>a</em> fluorescence and biochemical analyses were carried out. In experiment 1, increases in dynamic photoinhibition (DP) of 135 % (Day 1), 370 % (Day 2), 206 % (Day 3), and 100 % (Day 5) were observed from sun plants. In experiment 2, NPNO400 showed higher levels of DP on the first (+ 148 %) and second days (+ 171 %), followed by a reduction on the fifth day (- 22 %). For gas exchange parameters, NPNO400 attenuated the reduction in <em>A</em> at noon and significantly increased <em>k</em>, while NPNO200 decreased the <em>k</em> value. The differences in the effects induced by NPNO treatments are dose-dependent. In experiment 3, NPNO was the only treatment that significantly increased NO bioavailability and the activity of antioxidant enzymes (SOD; POD), contributing to mitigating stress caused by excess light on plants. The nanoencapsulation of NO donors protected maize plants against photoinhibition.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100711"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoencapsulation of nitric oxide (NO) donors provides sustained release of NO, prolonging its action on plants. Here, we evaluated the action of NO-releasing chitosan nanoparticles containing GSNO (S-nitrosoglutathione) on the protection of maize plants (Zea mays cv. Balu 787) against high light-induced stress. Experiment 1 was used to compare maize plants under different light intensities. Experiment 2 evaluated the protective effect of chitosan nanoparticles containing GSNO (NPNO) in different concentrations (200 or 400 µM). Experiment 3 compared the protective effect of NPNO to non-nanoencapsulated GSNO (NO) and nanoparticles without NO-releasing molecule (NP). In experiments 1 and 2, chlorophyll a fluorescence and gas exchange measurements were performed. In experiment 3, chlorophyll a fluorescence and biochemical analyses were carried out. In experiment 1, increases in dynamic photoinhibition (DP) of 135 % (Day 1), 370 % (Day 2), 206 % (Day 3), and 100 % (Day 5) were observed from sun plants. In experiment 2, NPNO400 showed higher levels of DP on the first (+ 148 %) and second days (+ 171 %), followed by a reduction on the fifth day (- 22 %). For gas exchange parameters, NPNO400 attenuated the reduction in A at noon and significantly increased k, while NPNO200 decreased the k value. The differences in the effects induced by NPNO treatments are dose-dependent. In experiment 3, NPNO was the only treatment that significantly increased NO bioavailability and the activity of antioxidant enzymes (SOD; POD), contributing to mitigating stress caused by excess light on plants. The nanoencapsulation of NO donors protected maize plants against photoinhibition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
期刊最新文献
Integrated metabolome and transcriptome analysis of fulvic acid relieves nitrate stress-induced damage in spinach (Spinacia oleracea L.) by regulating multiple defense pathways Metabolic reprogramming of tomato plants under Ralstonia solanacearum infection Pinellia ternata HD-Zip6 gene positively regulates heat stress tolerance in transgenic Arabidopsis by increasing ROS scavenging and NAC019 expression Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Volatile organic compounds as potential markers of Botrytis cinerea infection in intact harvested grape berries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1