Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot?

IF 6.8 Q1 PLANT SCIENCES Plant Stress Pub Date : 2025-03-11 DOI:10.1016/j.stress.2025.100802
Petronia Carillo
{"title":"Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot?","authors":"Petronia Carillo","doi":"10.1016/j.stress.2025.100802","DOIUrl":null,"url":null,"abstract":"<div><div>Heat and water stress are imposing significant constraints on agricultural systems, particularly in Mediterranean regions experiencing prolonged droughts, rising temperatures, and increasing aridity. These abiotic stresses trigger secondary effects, including osmotic and oxidative stress, simultaneously influencing multiple plant traits. Under drought conditions, stomatal closure limits CO₂ uptake, interfering with photosynthetic electron transport and increasing the production of reactive oxygen species (ROS). Elevated ROS determine oxidative stress, damaging cell membranes, causing genotoxicity, and disrupting key metabolic processes like nutrient transport, cell division, and expansion. Plants activate natural defence mechanisms to counter these stresses, but these responses are energetically costly. The diversion of carbon skeletons and energy from growth and biomass accumulation to stress responses results in reduced yields, especially in key Mediterranean crops such as wheat, tomato, grapevine, and olive trees, which are highly vulnerable to extreme climatic events. Biostimulants hold significant potential as an innovative approach to strengthening plants' natural defences and enhancing their capacity to endure heat and drought stress. By modulating stress-related pathways, enhancing antioxidant defence mechanisms, and promoting the accumulation of osmolytes, these products help maintain water use efficiency (WUE), sustain photosynthetic activity, and reduce stress-induced yield losses. In areas where water scarcity is a major limiting factor for agriculture, biostimulants offer a promising strategy to enhance plant adaptation to increasingly unpredictable precipitation patterns and higher temperatures. Beyond their immediate benefits, biostimulants offer a sustainable solution for supporting crop productivity amidst climate change. Further research into their biochemical, physiological, and metabolic impacts, specifically focusing on Mediterranean cropping systems, will be essential to optimise their application and integrate them effectively into modern, sustainable farming strategies.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"16 ","pages":"Article 100802"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X25000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heat and water stress are imposing significant constraints on agricultural systems, particularly in Mediterranean regions experiencing prolonged droughts, rising temperatures, and increasing aridity. These abiotic stresses trigger secondary effects, including osmotic and oxidative stress, simultaneously influencing multiple plant traits. Under drought conditions, stomatal closure limits CO₂ uptake, interfering with photosynthetic electron transport and increasing the production of reactive oxygen species (ROS). Elevated ROS determine oxidative stress, damaging cell membranes, causing genotoxicity, and disrupting key metabolic processes like nutrient transport, cell division, and expansion. Plants activate natural defence mechanisms to counter these stresses, but these responses are energetically costly. The diversion of carbon skeletons and energy from growth and biomass accumulation to stress responses results in reduced yields, especially in key Mediterranean crops such as wheat, tomato, grapevine, and olive trees, which are highly vulnerable to extreme climatic events. Biostimulants hold significant potential as an innovative approach to strengthening plants' natural defences and enhancing their capacity to endure heat and drought stress. By modulating stress-related pathways, enhancing antioxidant defence mechanisms, and promoting the accumulation of osmolytes, these products help maintain water use efficiency (WUE), sustain photosynthetic activity, and reduce stress-induced yield losses. In areas where water scarcity is a major limiting factor for agriculture, biostimulants offer a promising strategy to enhance plant adaptation to increasingly unpredictable precipitation patterns and higher temperatures. Beyond their immediate benefits, biostimulants offer a sustainable solution for supporting crop productivity amidst climate change. Further research into their biochemical, physiological, and metabolic impacts, specifically focusing on Mediterranean cropping systems, will be essential to optimise their application and integrate them effectively into modern, sustainable farming strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物刺激素能否增强地中海热点地区植物对热量和水分胁迫的抵御能力?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
期刊最新文献
Integrated metabolome and transcriptome analysis of fulvic acid relieves nitrate stress-induced damage in spinach (Spinacia oleracea L.) by regulating multiple defense pathways Metabolic reprogramming of tomato plants under Ralstonia solanacearum infection Pinellia ternata HD-Zip6 gene positively regulates heat stress tolerance in transgenic Arabidopsis by increasing ROS scavenging and NAC019 expression Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Volatile organic compounds as potential markers of Botrytis cinerea infection in intact harvested grape berries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1