PsDUF6A from Populus simonii enhances drought tolerance in transgenic Arabidopsis and poplar by increasing ROS scavenging

IF 6.8 Q1 PLANT SCIENCES Plant Stress Pub Date : 2024-12-13 DOI:10.1016/j.stress.2024.100706
Yanfei Yang , Jinna Zhao , Xingrong Ren , Xueqi Bai , Tao Li , Jianbo Li
{"title":"PsDUF6A from Populus simonii enhances drought tolerance in transgenic Arabidopsis and poplar by increasing ROS scavenging","authors":"Yanfei Yang ,&nbsp;Jinna Zhao ,&nbsp;Xingrong Ren ,&nbsp;Xueqi Bai ,&nbsp;Tao Li ,&nbsp;Jianbo Li","doi":"10.1016/j.stress.2024.100706","DOIUrl":null,"url":null,"abstract":"<div><div>Domain of unknown function (DUF) proteins play roles in a range of plant biological processes, including growth and development, and adaptation to abiotic stresses. However, their function was largely unknown in woody plants. <em>Populus simonii</em> is a notable native tree species in northern China and is highly tolerance to drought stress. In this study, <em>PsDUF6A</em> was isolated and functionally characterized from <em>P. simonii</em>. This gene was highly expressed in mature leaves and its expression was induced under drought condition. Transgenic <em>Arabidopsis</em> and 84 K poplar lines overexpressing <em>PsDUF6A</em> were constructed to investigate the function of <em>PsDUF6A</em> in drought tolerance. Under drought conditions, the survival rate and relative water content were higher in <em>PsDUF6A</em>-overexpressing <em>Arabidopsis</em> than in wild-type <em>Arabidopsis</em>, whereas the opposite trend was observed for relative electrical conductivity, indicative of increased drought tolerance. Compared with 84 K poplar, transgenic poplar had a higher photosynthetic activity, lower water loss rate, and higher root biomass. Moreover, <em>PsDUF6A-</em>overexpressing increased antioxidant enzyme activities and the reactive oxygen species scavenging. In addition, the yeast one-hybrid assay indicated that PsC2H213, PsC2H214, PsC2H215, PsC2H217, and PsC2H218 can directly bind to <em>PsDUF6A</em> promoter. These results indicated that <em>PsDUF6A</em> enhances drought tolerance by maintaining ROS homeostasis, and its expression might regulate by C2H2-type ZFPs. These findings revealed the positive contributions of <em>PsDUF6A</em> to drought tolerance and provided insights into the underlying regulatory network of <em>P. simonii</em> response to drought stress.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100706"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24003592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Domain of unknown function (DUF) proteins play roles in a range of plant biological processes, including growth and development, and adaptation to abiotic stresses. However, their function was largely unknown in woody plants. Populus simonii is a notable native tree species in northern China and is highly tolerance to drought stress. In this study, PsDUF6A was isolated and functionally characterized from P. simonii. This gene was highly expressed in mature leaves and its expression was induced under drought condition. Transgenic Arabidopsis and 84 K poplar lines overexpressing PsDUF6A were constructed to investigate the function of PsDUF6A in drought tolerance. Under drought conditions, the survival rate and relative water content were higher in PsDUF6A-overexpressing Arabidopsis than in wild-type Arabidopsis, whereas the opposite trend was observed for relative electrical conductivity, indicative of increased drought tolerance. Compared with 84 K poplar, transgenic poplar had a higher photosynthetic activity, lower water loss rate, and higher root biomass. Moreover, PsDUF6A-overexpressing increased antioxidant enzyme activities and the reactive oxygen species scavenging. In addition, the yeast one-hybrid assay indicated that PsC2H213, PsC2H214, PsC2H215, PsC2H217, and PsC2H218 can directly bind to PsDUF6A promoter. These results indicated that PsDUF6A enhances drought tolerance by maintaining ROS homeostasis, and its expression might regulate by C2H2-type ZFPs. These findings revealed the positive contributions of PsDUF6A to drought tolerance and provided insights into the underlying regulatory network of P. simonii response to drought stress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
期刊最新文献
Integrated metabolome and transcriptome analysis of fulvic acid relieves nitrate stress-induced damage in spinach (Spinacia oleracea L.) by regulating multiple defense pathways Metabolic reprogramming of tomato plants under Ralstonia solanacearum infection Pinellia ternata HD-Zip6 gene positively regulates heat stress tolerance in transgenic Arabidopsis by increasing ROS scavenging and NAC019 expression Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Volatile organic compounds as potential markers of Botrytis cinerea infection in intact harvested grape berries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1