Zirconia-calcium silicate bioactive composites for dental applications using DLP additive manufacturing

Q1 Computer Science Bioprinting Pub Date : 2025-02-01 DOI:10.1016/j.bprint.2024.e00377
Ahmed Binobaid , Michele De Lisi , Josette Camilleri , Hany Hassanin , Khamis Essa
{"title":"Zirconia-calcium silicate bioactive composites for dental applications using DLP additive manufacturing","authors":"Ahmed Binobaid ,&nbsp;Michele De Lisi ,&nbsp;Josette Camilleri ,&nbsp;Hany Hassanin ,&nbsp;Khamis Essa","doi":"10.1016/j.bprint.2024.e00377","DOIUrl":null,"url":null,"abstract":"<div><div>Zirconia has outstanding mechanical strength which made it a favourable material dental implants material. However, its use is limited by challenges in bone bonding and elasticity. This paper introduces a novel bioprinting ceramic material by mixing calcium silicate with zirconia to enhance bioactivity. Using the high precision and speed of Digital Light Processing (DLP), this study develops a novel zirconia-calcium silicate slurry for dental applications. The study reports the preparation of zirconia-calcium silicate, formulation of resin compositions, and optimization of the bioprinting, debinding and sintering. Employing a full factorial Design of Experiments (DOE), a systematic approach was implemented to identify optimal printing conditions such as the layer thickness, exposure time, and power. The results show that slurries formulated with BYK-111 as the dispersant and ACMO/PEGDA/TPO resin, coupled with 80 wt% solid loading, achieved the most favourable rheological properties, cure depth, and printing accuracy. The optimal printing conditions were 0.75 s exposure time, 300 % exposure power, and 30 μm layer thickness, ensured a relative density of the sintered implants exceeding 95 %. This study advances dental implant materials by introducing a novel DLP biomaterial with a slurry formulation, presenting significant implications for clinical applications and future research in developing advanced dental and medical implants.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"45 ","pages":"Article e00377"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconia has outstanding mechanical strength which made it a favourable material dental implants material. However, its use is limited by challenges in bone bonding and elasticity. This paper introduces a novel bioprinting ceramic material by mixing calcium silicate with zirconia to enhance bioactivity. Using the high precision and speed of Digital Light Processing (DLP), this study develops a novel zirconia-calcium silicate slurry for dental applications. The study reports the preparation of zirconia-calcium silicate, formulation of resin compositions, and optimization of the bioprinting, debinding and sintering. Employing a full factorial Design of Experiments (DOE), a systematic approach was implemented to identify optimal printing conditions such as the layer thickness, exposure time, and power. The results show that slurries formulated with BYK-111 as the dispersant and ACMO/PEGDA/TPO resin, coupled with 80 wt% solid loading, achieved the most favourable rheological properties, cure depth, and printing accuracy. The optimal printing conditions were 0.75 s exposure time, 300 % exposure power, and 30 μm layer thickness, ensured a relative density of the sintered implants exceeding 95 %. This study advances dental implant materials by introducing a novel DLP biomaterial with a slurry formulation, presenting significant implications for clinical applications and future research in developing advanced dental and medical implants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
期刊最新文献
FK506 binding protein like, FKBPL, as a novel therapeutic target in 2D and 3D bioprinted, models of cardiac fibrosis Nanocomposite hydrogel-based bioinks composed of a fucose-rich polysaccharide and nanocellulose fibers for 3D-bioprinting applications 4D printing in skin tissue engineering: A revolutionary approach to enhance wound healing and combat infections Zirconia-calcium silicate bioactive composites for dental applications using DLP additive manufacturing Modeling of oral squamous cell carcinoma microenvironment- A 3D bioprinting approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1