{"title":"Modeling of oral squamous cell carcinoma microenvironment- A 3D bioprinting approach","authors":"Akhilanand Chaurasia , Gowri Sivaramakrishnan , Farah Asa’ad , Lena Larsson , Arwa Daghrery , Joana Marques , Francesca Spirito , Vitória Batista Clemente , Ana Carolina Morais Apolônio , Mahdieh Alipour , Rini Tiwari","doi":"10.1016/j.bprint.2024.e00381","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Oral squamous cell carcinoma (OSCC) presents significant challenges due to its complex microenvironment and invasive characteristics. Traditional two-dimensional (2D) culture systems are inadequate for modelling the intricate features of OSCC, necessitating advanced techniques for better <em>in vitro</em> modelling.</div></div><div><h3>Objective</h3><div>This review aims to explore the applications of 3D bioprinting in modelling the OSCC microenvironment, highlighting the advantages over conventional methods and discussing recent advancements in the field.</div></div><div><h3>Methods</h3><div>The review synthesizes recent literature on 3D bioprinting technologies, focusing on their application in replicating OSCC's microenvironment. Key areas include the integration of various cell types within a biomimetic extracellular matrix, the use of microfluidic systems to study tumor-stromal interactions, and the incorporation of advanced imaging modalities.</div></div><div><h3>Results</h3><div>3D bioprinting allows for the precise fabrication of complex OSCC tumor architectures, incorporating cancer cells, stromal cells, and immune cells. The integration of microfluidic systems facilitates the study of tumor invasion, metastasis, and drug response. Recent advancements in bioink development, particularly the use of patient-derived cells and biomolecules, enhance the physiological relevance of these models. Emerging imaging technologies provide unprecedented insights into the dynamics of OSCC progression within these constructs.</div></div><div><h3>Conclusion</h3><div>3D bioprinting shows immense potential for advancing the understanding of OSCC pathobiology and developing personalized therapeutic strategies. However, challenges such as standardizing bioink formulations and scaling fabrication techniques must be addressed to effectively translate these innovations into clinical practice.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"45 ","pages":"Article e00381"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Oral squamous cell carcinoma (OSCC) presents significant challenges due to its complex microenvironment and invasive characteristics. Traditional two-dimensional (2D) culture systems are inadequate for modelling the intricate features of OSCC, necessitating advanced techniques for better in vitro modelling.
Objective
This review aims to explore the applications of 3D bioprinting in modelling the OSCC microenvironment, highlighting the advantages over conventional methods and discussing recent advancements in the field.
Methods
The review synthesizes recent literature on 3D bioprinting technologies, focusing on their application in replicating OSCC's microenvironment. Key areas include the integration of various cell types within a biomimetic extracellular matrix, the use of microfluidic systems to study tumor-stromal interactions, and the incorporation of advanced imaging modalities.
Results
3D bioprinting allows for the precise fabrication of complex OSCC tumor architectures, incorporating cancer cells, stromal cells, and immune cells. The integration of microfluidic systems facilitates the study of tumor invasion, metastasis, and drug response. Recent advancements in bioink development, particularly the use of patient-derived cells and biomolecules, enhance the physiological relevance of these models. Emerging imaging technologies provide unprecedented insights into the dynamics of OSCC progression within these constructs.
Conclusion
3D bioprinting shows immense potential for advancing the understanding of OSCC pathobiology and developing personalized therapeutic strategies. However, challenges such as standardizing bioink formulations and scaling fabrication techniques must be addressed to effectively translate these innovations into clinical practice.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.