{"title":"Chitosan-Coated silver nanoparticles with various floral honey bioreductors: A promising nonalcoholic hand gel sanitizer formulation","authors":"Saidun Fiddaroini , Kurnia Indu , Luailik Madaniyah , Suci Amalia , Aulanni'am , Moh. Farid Rahman , Akhmad Sabarudin","doi":"10.1016/j.onano.2024.100228","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance represents a critical global health challenge, necessitating innovative strategies to combat resistant pathogens. In this study, silver nanoparticles (AgNPs) were synthesized using honey as a bioreductant and coated with oligochitosan derived from the depolymerization of low-molecular-weight chitosan. The synthesis employed eco-friendly methods, with characterization performed via UV–Vis spectroscopy, FTIR, TEM, EDX, XRD, and LC<img>HRMS. AgNPs synthesized with <em>Ceiba pentandra</em> honey exhibited an average particle size of 11.71 nm, demonstrating high antibacterial activity when coated with oligochitosan. The 10 % AgNPs-Chitosan-based hand gel sanitizer formulation achieved inhibition zones of 14.84 ± 0.40 mm against <em>Staphylococcus aureus</em> and 11.16 ± 0.73 mm against <em>Pseudomonas aeruginosa.</em> The hand gel sanitizer formulation exhibited stable pH (4.0–4.3), high resistance to syneresis at 5 °C and 40 °C, and superior antibacterial efficacy compared to alcohol-based hand gel sanitizers. Dermatological assessments confirmed the formulation's safety, and <em>Artemia salina</em> toxicity tests revealed the highest LC<sub>50</sub> value (2,648.97 ppm) for AgNPs derived from <em>C. pentandra</em> honey. This work provides an eco-friendly, efficient method for AgNP synthesis with strong potential for biomedical and environmental applications, including their use in hand gel sanitizers to reduce pathogen transmission in various settings, contributing to the advancement of green nanotechnology.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"21 ","pages":"Article 100228"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235295202400029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance represents a critical global health challenge, necessitating innovative strategies to combat resistant pathogens. In this study, silver nanoparticles (AgNPs) were synthesized using honey as a bioreductant and coated with oligochitosan derived from the depolymerization of low-molecular-weight chitosan. The synthesis employed eco-friendly methods, with characterization performed via UV–Vis spectroscopy, FTIR, TEM, EDX, XRD, and LCHRMS. AgNPs synthesized with Ceiba pentandra honey exhibited an average particle size of 11.71 nm, demonstrating high antibacterial activity when coated with oligochitosan. The 10 % AgNPs-Chitosan-based hand gel sanitizer formulation achieved inhibition zones of 14.84 ± 0.40 mm against Staphylococcus aureus and 11.16 ± 0.73 mm against Pseudomonas aeruginosa. The hand gel sanitizer formulation exhibited stable pH (4.0–4.3), high resistance to syneresis at 5 °C and 40 °C, and superior antibacterial efficacy compared to alcohol-based hand gel sanitizers. Dermatological assessments confirmed the formulation's safety, and Artemia salina toxicity tests revealed the highest LC50 value (2,648.97 ppm) for AgNPs derived from C. pentandra honey. This work provides an eco-friendly, efficient method for AgNP synthesis with strong potential for biomedical and environmental applications, including their use in hand gel sanitizers to reduce pathogen transmission in various settings, contributing to the advancement of green nanotechnology.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.