Are Bentong ginger (Zingiber officinale) biosynthesized silver nanoparticles safe and effective? An optimization, characterization, and toxicity evaluation study

Q2 Pharmacology, Toxicology and Pharmaceutics OpenNano Pub Date : 2025-01-01 DOI:10.1016/j.onano.2024.100224
Nor-Azmiraah Abd Jabar , Mahmud Ab Rashid Nor-Khaizura , Siti Izera Ismail , Yuet Ying Loo , Kah Hui Chong , Kousalya Padmanabhan , Shan Jiang
{"title":"Are Bentong ginger (Zingiber officinale) biosynthesized silver nanoparticles safe and effective? An optimization, characterization, and toxicity evaluation study","authors":"Nor-Azmiraah Abd Jabar ,&nbsp;Mahmud Ab Rashid Nor-Khaizura ,&nbsp;Siti Izera Ismail ,&nbsp;Yuet Ying Loo ,&nbsp;Kah Hui Chong ,&nbsp;Kousalya Padmanabhan ,&nbsp;Shan Jiang","doi":"10.1016/j.onano.2024.100224","DOIUrl":null,"url":null,"abstract":"<div><div>The biosynthesis of silver nanoparticles from ginger extract is particularly interesting due to the bioactive compounds present in ginger, which have antioxidant, antimicrobial, and anti-inflammatory properties. The study aims to optimize, characterize, and evaluate the toxicity value of the biosynthesized silver nanoparticles using <em>Bentong</em> ginger (<em>Zingiber officinale</em>) rhizome extract and commercialized ginger powder extract as reducing and capping agents. The synthesis was optimized regarding pH, silver nitrate concentration, and incubation time for better yield and stability. Additionally, biosynthesized silver nanoparticles were characterized using UV–vis spectrophotometer, X-ray diffraction, Fourier-transform Infrared, and Transmission Electron Microscope analysis. Cytotoxicity test was done using brine shrimp lethality test to determine toxicity value. The result for both <em>Bentong</em> ginger rhizome extract and commercialized ginger powder extract indicated that the maximum absorption of biosynthesized silver nanoparticles was 450 nm, with the most optimum pH of 11, 1 mM of silver nitrate concentration, and incubation time of 24 h. The nanoparticles were almost spherical, with an average particle size of 15.08 ± 6 nm. The analysis confirms the presence of phytochemicals in the ginger extract that aids in reducing silver ions into silver nanoparticles. Brine shrimp lethality assay showed the LC<sub>50</sub> for AgNPs was medium toxic at 838.31 µg/mL. Although silver nanoparticles possess antimicrobial ability, the potential toxicity to human health and environmental concerns must be considered before deploying into food industries. This is the first report utilizing <em>Bentong</em> ginger in silver nanoparticle synthesis.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"21 ","pages":"Article 100224"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952024000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

The biosynthesis of silver nanoparticles from ginger extract is particularly interesting due to the bioactive compounds present in ginger, which have antioxidant, antimicrobial, and anti-inflammatory properties. The study aims to optimize, characterize, and evaluate the toxicity value of the biosynthesized silver nanoparticles using Bentong ginger (Zingiber officinale) rhizome extract and commercialized ginger powder extract as reducing and capping agents. The synthesis was optimized regarding pH, silver nitrate concentration, and incubation time for better yield and stability. Additionally, biosynthesized silver nanoparticles were characterized using UV–vis spectrophotometer, X-ray diffraction, Fourier-transform Infrared, and Transmission Electron Microscope analysis. Cytotoxicity test was done using brine shrimp lethality test to determine toxicity value. The result for both Bentong ginger rhizome extract and commercialized ginger powder extract indicated that the maximum absorption of biosynthesized silver nanoparticles was 450 nm, with the most optimum pH of 11, 1 mM of silver nitrate concentration, and incubation time of 24 h. The nanoparticles were almost spherical, with an average particle size of 15.08 ± 6 nm. The analysis confirms the presence of phytochemicals in the ginger extract that aids in reducing silver ions into silver nanoparticles. Brine shrimp lethality assay showed the LC50 for AgNPs was medium toxic at 838.31 µg/mL. Although silver nanoparticles possess antimicrobial ability, the potential toxicity to human health and environmental concerns must be considered before deploying into food industries. This is the first report utilizing Bentong ginger in silver nanoparticle synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
期刊最新文献
Nanoformulation, characterization, and biological activity assays of extracts of Derris trifoliata Lour, a rutin-rich mangrove plant Resveratrol loaded zein nanoparticles for inhibiting proliferation of osteosarcoma cells: Synthesis, characterization, release profile, and cytotoxicity Osteogenic differentiation of mesenchymal stem cells in cell-laden culture of self-assembling peptide hydrogels Carrageenan bionanocomposite films incorporating Ag and Zn-Doped CeO₂ nanoparticles for active food packaging applications Micro-channels array device fabricated via two photon lithography for cell migration studies in Neuroblastoma metastatic dissemination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1