Mohammad Moslem Imani , Bahar Azadi , Hamid Reza Mozaffari , Mohammad Salmani Mobarakeh , Mohsen Safaei
{"title":"Synthesis, characterization and antibacterial properties of chitosan/thyme oil/MgO bionanocomposite against Streptococcus mutans","authors":"Mohammad Moslem Imani , Bahar Azadi , Hamid Reza Mozaffari , Mohammad Salmani Mobarakeh , Mohsen Safaei","doi":"10.1016/j.onano.2024.100227","DOIUrl":null,"url":null,"abstract":"<div><div>The continuous increase of bacterial resistance in medical and industrial environments is a significant challenge due to their resistance to typical antimicrobial treatments. This study aimed to introduce a new colloidal solution containing chitosan/thyme oil/MgO Bionanocomposite with the strongest antibacterial activity. In situ synthesis method was used for the synthesis of the chitosan/thyme oil/MgO nanocomposite. Nine experiments based on the Taguchi design were created to examine the effects of three variables at three different levels. In the parameters of experiment 7 (3 mg/mL of chitosan Biopolymer, 0.5 μL/mL of thyme oil, and 6 mg/mL of MgO), the results showed that the bacterial viability was zero. The nanocomposite demonstrated enhanced structural properties and superior antibacterial activity compared to its individual components. This study showed that the synthesized nanocomposite had desirable structural properties and antibacterial activity under optimal conditions.</div></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"21 ","pages":"Article 100227"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952024000288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
The continuous increase of bacterial resistance in medical and industrial environments is a significant challenge due to their resistance to typical antimicrobial treatments. This study aimed to introduce a new colloidal solution containing chitosan/thyme oil/MgO Bionanocomposite with the strongest antibacterial activity. In situ synthesis method was used for the synthesis of the chitosan/thyme oil/MgO nanocomposite. Nine experiments based on the Taguchi design were created to examine the effects of three variables at three different levels. In the parameters of experiment 7 (3 mg/mL of chitosan Biopolymer, 0.5 μL/mL of thyme oil, and 6 mg/mL of MgO), the results showed that the bacterial viability was zero. The nanocomposite demonstrated enhanced structural properties and superior antibacterial activity compared to its individual components. This study showed that the synthesized nanocomposite had desirable structural properties and antibacterial activity under optimal conditions.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.