Optimization and verification of hot tensile deformation parameters of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy based on processing map theory

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-02-04 DOI:10.1016/j.intermet.2025.108692
Xuejian Lin, Hongjun Huang, Xiaoguang Yuan, Bowen Zheng, Xiaojiao Zuo, Ge Zhou, Kai Du
{"title":"Optimization and verification of hot tensile deformation parameters of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy based on processing map theory","authors":"Xuejian Lin,&nbsp;Hongjun Huang,&nbsp;Xiaoguang Yuan,&nbsp;Bowen Zheng,&nbsp;Xiaojiao Zuo,&nbsp;Ge Zhou,&nbsp;Kai Du","doi":"10.1016/j.intermet.2025.108692","DOIUrl":null,"url":null,"abstract":"<div><div>The high temperature tensile experiment of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy was completed at 750–900 °C and strain rate of 10<sup>−5</sup>–10<sup>−3</sup> s<sup>−1</sup>. The processing map corresponding to the tensile process was established, and both optimal and instability zones were identified. The microstructure of different zones of processing map were observed in detail, and the justness of processing map was proved. The results show that the strain rate sensitivity index and energy dissipation rate increase with change of deformation conditions from low temperature/high stretching rate to high temperature/low stretching rate. The parameters of thermal tensile instability zone are: 750–795 °C/10<sup>−4</sup>–4 × 10<sup>−4</sup>s<sup>−1</sup> and 750–778 °C/10<sup>−4</sup>–10<sup>−5</sup>s<sup>−1</sup>. The optimal hot deformation parameters are as follows: the temperature is 880–900 °C and the strain rate is 2.5 × 10<sup>−4</sup>–10<sup>−5</sup>s<sup>−1</sup>. The obvious cracks and holes appear in the deformation structure corresponding to the instability zone, which are preferentially generated at the lamellar interface. The ratio of recrystallized structure corresponding to the optimal deformation parameter zone is higher than that in the instability zone, and the plastic deformation ability is greatly improved. The deformation characteristics of the instability zone are the dislocation pile-up, which is caused by the hindrance of the lamellar boundary and lamellar structure to the dislocation movement, and the substructure formed by the entanglement of the high-density dislocation regions in the lamellar structure. At the same time, there are also twins with a certain angle between the lamellar structure. The characteristics of deformation structure corresponding to the optimal deformation parameter region are dislocation, twin and recrystallization. The dislocation density in the recrystallized structure decreases, which can slow down the stress concentration inside the deformed structure, and the probability of instability such as cracks inside the alloy decreases.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"180 ","pages":"Article 108692"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000573","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The high temperature tensile experiment of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy was completed at 750–900 °C and strain rate of 10−5–10−3 s−1. The processing map corresponding to the tensile process was established, and both optimal and instability zones were identified. The microstructure of different zones of processing map were observed in detail, and the justness of processing map was proved. The results show that the strain rate sensitivity index and energy dissipation rate increase with change of deformation conditions from low temperature/high stretching rate to high temperature/low stretching rate. The parameters of thermal tensile instability zone are: 750–795 °C/10−4–4 × 10−4s−1 and 750–778 °C/10−4–10−5s−1. The optimal hot deformation parameters are as follows: the temperature is 880–900 °C and the strain rate is 2.5 × 10−4–10−5s−1. The obvious cracks and holes appear in the deformation structure corresponding to the instability zone, which are preferentially generated at the lamellar interface. The ratio of recrystallized structure corresponding to the optimal deformation parameter zone is higher than that in the instability zone, and the plastic deformation ability is greatly improved. The deformation characteristics of the instability zone are the dislocation pile-up, which is caused by the hindrance of the lamellar boundary and lamellar structure to the dislocation movement, and the substructure formed by the entanglement of the high-density dislocation regions in the lamellar structure. At the same time, there are also twins with a certain angle between the lamellar structure. The characteristics of deformation structure corresponding to the optimal deformation parameter region are dislocation, twin and recrystallization. The dislocation density in the recrystallized structure decreases, which can slow down the stress concentration inside the deformed structure, and the probability of instability such as cracks inside the alloy decreases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Optimization and verification of hot tensile deformation parameters of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy based on processing map theory A novel reactive high-entropy alloy with ultra-strong strain-rate effect Effect of Al variation on microstructure and properties of porous FeCoNiCrAlx high-entropy alloys synthesized via thermal explosion Vacuum brazing of Ti2AlNb alloy with AgCu/Ti/AgCu sandwich filler metal. Effects of Mg content on fatigue behavior of wrought Al–8Si–(0.33–1.32)Mg alloy sheets in T4 temper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1