Effects of Mg content on fatigue behavior of wrought Al–8Si–(0.33–1.32)Mg alloy sheets in T4 temper

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-02-03 DOI:10.1016/j.intermet.2025.108684
Guangdong Wang , Tian Hua , Yinghao Liu , Yue Tian , Shuying Chen , Jingyi Cao , Yiran Zhou
{"title":"Effects of Mg content on fatigue behavior of wrought Al–8Si–(0.33–1.32)Mg alloy sheets in T4 temper","authors":"Guangdong Wang ,&nbsp;Tian Hua ,&nbsp;Yinghao Liu ,&nbsp;Yue Tian ,&nbsp;Shuying Chen ,&nbsp;Jingyi Cao ,&nbsp;Yiran Zhou","doi":"10.1016/j.intermet.2025.108684","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, microstructure, fatigue life and fatigue fracture behavior of Al–8Si–(0.33–1.32)Mg (mass fraction, %) alloy sheets in T4 temper were systematically investigated by scanning electron microscopy/energy dispersive spectroscopy, electron backscatter diffraction, transmission electron microscopy and high frequency fatigue tests. The results show that when the stress ratio <em>R</em> = 0 and the stress level is 165 MPa, the fatigue properties of Al–8Si–(0.33–1.32)Mg alloy sheets in T4 temper first increase and then decrease with the increase of Mg content. When the Mg content is 0.78 %–0.99 %, the fatigue life is the longest, reaching 7.14 × 10<sup>5</sup>∼2.99 × 10<sup>6</sup> cycles. Fatigue cracks of Al–8Si–(0.33–0.99)Mg alloy sheets in T4 temper initiate at the persistent slip band. The fatigue crack initiation of Al–8Si–1.32Mg alloy sheet initiates at particles-associated aggregation area (PAA), and the fatigue initiation life of Al–8Si–1.32Mg alloy sheet is significantly shortened. PAA has little effect on tensile properties, but significant effect on fatigue properties. PAA can be regarded as a special defect affecting fatigue properties of materials. The stress concentration is the largest at particle orientation 0°. In addition, the smaller the particle spacing, the greater the stress concentration, the easier the crack initiation under applied load, when the particle spacing is greater than one particle spacing, the particle aggregation effect disappears. This study optimizes the fatigue behavior of high-silicon wrought aluminum alloy by controlling the Mg content and discovers a novel fatigue defect (PAA), providing important scientific insights for optimizing alloy properties and meeting diverse industrial needs.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"180 ","pages":"Article 108684"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000494","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, microstructure, fatigue life and fatigue fracture behavior of Al–8Si–(0.33–1.32)Mg (mass fraction, %) alloy sheets in T4 temper were systematically investigated by scanning electron microscopy/energy dispersive spectroscopy, electron backscatter diffraction, transmission electron microscopy and high frequency fatigue tests. The results show that when the stress ratio R = 0 and the stress level is 165 MPa, the fatigue properties of Al–8Si–(0.33–1.32)Mg alloy sheets in T4 temper first increase and then decrease with the increase of Mg content. When the Mg content is 0.78 %–0.99 %, the fatigue life is the longest, reaching 7.14 × 105∼2.99 × 106 cycles. Fatigue cracks of Al–8Si–(0.33–0.99)Mg alloy sheets in T4 temper initiate at the persistent slip band. The fatigue crack initiation of Al–8Si–1.32Mg alloy sheet initiates at particles-associated aggregation area (PAA), and the fatigue initiation life of Al–8Si–1.32Mg alloy sheet is significantly shortened. PAA has little effect on tensile properties, but significant effect on fatigue properties. PAA can be regarded as a special defect affecting fatigue properties of materials. The stress concentration is the largest at particle orientation 0°. In addition, the smaller the particle spacing, the greater the stress concentration, the easier the crack initiation under applied load, when the particle spacing is greater than one particle spacing, the particle aggregation effect disappears. This study optimizes the fatigue behavior of high-silicon wrought aluminum alloy by controlling the Mg content and discovers a novel fatigue defect (PAA), providing important scientific insights for optimizing alloy properties and meeting diverse industrial needs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Optimization and verification of hot tensile deformation parameters of Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy based on processing map theory A novel reactive high-entropy alloy with ultra-strong strain-rate effect Effect of Al variation on microstructure and properties of porous FeCoNiCrAlx high-entropy alloys synthesized via thermal explosion Vacuum brazing of Ti2AlNb alloy with AgCu/Ti/AgCu sandwich filler metal. Effects of Mg content on fatigue behavior of wrought Al–8Si–(0.33–1.32)Mg alloy sheets in T4 temper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1