Wei-Han Zhang , Tong Li , Yan Chen , Yuan-Yuan Tan , Hai-Ying Wang , Lan-Hong Dai
{"title":"A novel reactive high-entropy alloy with ultra-strong strain-rate effect","authors":"Wei-Han Zhang , Tong Li , Yan Chen , Yuan-Yuan Tan , Hai-Ying Wang , Lan-Hong Dai","doi":"10.1016/j.intermet.2025.108689","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive structural materials are crucial for energy exploitation and defense applications due to their outstanding energy release characteristics. However, traditional reactive structural materials often struggle to meet the required mechanical properties. In contrast, reactive high-entropy alloys that balance mechanical performance and energy release characteristics show great potential in this field. Here, we designed the active high-entropy alloy Ti<sub>50</sub>Zr<sub>25</sub>Hf<sub>12.5</sub>Nb<sub>12.5</sub>, at% using a metastable high-entropy alloy design strategy (“d-electron alloy” strategy). The alloy exhibits a single-phase BCC structure both before and after quasi-static tension, but undergoes an impact-induced ω phase transition during dynamic tension, resulting in an unprecedented increase in yield strength from 751 MPa to 1577 MPa (an increase of 110 %). Microstructural characterization revealed that the high-density dislocation walls resulting from the ω phase transition contribute to the significant strain-rate effect of the alloy. Furthermore, direct ballistic tests demonstrated that this novel active high-entropy alloy possesses excellent energy release characteristics (∼0.27 MPa assessed via Vented Chamber Calorimetry in 996 m/s direct ballistic test). This work sheds new light on designing reactive high entropy alloy with high dynamic strength may provide a mean to develop a wide range of advanced reactive structural materials.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"180 ","pages":"Article 108689"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525000548","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive structural materials are crucial for energy exploitation and defense applications due to their outstanding energy release characteristics. However, traditional reactive structural materials often struggle to meet the required mechanical properties. In contrast, reactive high-entropy alloys that balance mechanical performance and energy release characteristics show great potential in this field. Here, we designed the active high-entropy alloy Ti50Zr25Hf12.5Nb12.5, at% using a metastable high-entropy alloy design strategy (“d-electron alloy” strategy). The alloy exhibits a single-phase BCC structure both before and after quasi-static tension, but undergoes an impact-induced ω phase transition during dynamic tension, resulting in an unprecedented increase in yield strength from 751 MPa to 1577 MPa (an increase of 110 %). Microstructural characterization revealed that the high-density dislocation walls resulting from the ω phase transition contribute to the significant strain-rate effect of the alloy. Furthermore, direct ballistic tests demonstrated that this novel active high-entropy alloy possesses excellent energy release characteristics (∼0.27 MPa assessed via Vented Chamber Calorimetry in 996 m/s direct ballistic test). This work sheds new light on designing reactive high entropy alloy with high dynamic strength may provide a mean to develop a wide range of advanced reactive structural materials.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.