Study on Hydraulic Fracture Propagation of Strong Heterogeneous Shale Based on Stress-Seepage Damage Coupling Model

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2024-12-22 DOI:10.1002/ese3.1998
Wei Liu, Lei Xiao, Yunbin Ke, Yang Zhi, Kangxing Dong
{"title":"Study on Hydraulic Fracture Propagation of Strong Heterogeneous Shale Based on Stress-Seepage Damage Coupling Model","authors":"Wei Liu,&nbsp;Lei Xiao,&nbsp;Yunbin Ke,&nbsp;Yang Zhi,&nbsp;Kangxing Dong","doi":"10.1002/ese3.1998","DOIUrl":null,"url":null,"abstract":"<p>The developed laminar structure of shale makes it possess obvious anisotropic characteristics, and these anisotropic characteristics are one of the important factors leading to the strong and weak heterogeneous properties of shale. Additionally, there is a common phenomenon where the propagation of hydraulic fracture heights is limited in the hydraulic fracturing process of strongly heterogeneous shale reservoirs. To clarify the reasons for the limited height propagation of hydraulic fractures in strongly heterogeneous shale reservoirs, numerical simulation methods were used to study the propagation patterns of hydraulic fractures in shale reservoirs under different levels of anisotropy, flow rate, viscosity, and stress differences. The results show that as the anisotropy value increases and the heterogeneity becomes stronger, it becomes more difficult for hydraulic fractures to expand along the fracture height direction, and the fracture width at the fracture opening becomes larger. For strongly heterogeneous shale reservoir, the hydraulic fracture height can be increased within a certain range by increasing the flow rate, viscosity, and stress difference. When the upper limit value is exceeded, the hydraulic fracture height of the strong heterogeneous shale reservoir gradually becomes stable, and the increasing trend is no longer obvious. The strong or weak heterogeneity caused by the inherent anisotropic characteristics of shale reservoirs affects the development and transformation effectiveness of shale reservoirs. The research in this article will provide some reference material and guidance for the efficient development of shale reservoirs.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"309-322"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1998","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1998","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The developed laminar structure of shale makes it possess obvious anisotropic characteristics, and these anisotropic characteristics are one of the important factors leading to the strong and weak heterogeneous properties of shale. Additionally, there is a common phenomenon where the propagation of hydraulic fracture heights is limited in the hydraulic fracturing process of strongly heterogeneous shale reservoirs. To clarify the reasons for the limited height propagation of hydraulic fractures in strongly heterogeneous shale reservoirs, numerical simulation methods were used to study the propagation patterns of hydraulic fractures in shale reservoirs under different levels of anisotropy, flow rate, viscosity, and stress differences. The results show that as the anisotropy value increases and the heterogeneity becomes stronger, it becomes more difficult for hydraulic fractures to expand along the fracture height direction, and the fracture width at the fracture opening becomes larger. For strongly heterogeneous shale reservoir, the hydraulic fracture height can be increased within a certain range by increasing the flow rate, viscosity, and stress difference. When the upper limit value is exceeded, the hydraulic fracture height of the strong heterogeneous shale reservoir gradually becomes stable, and the increasing trend is no longer obvious. The strong or weak heterogeneity caused by the inherent anisotropic characteristics of shale reservoirs affects the development and transformation effectiveness of shale reservoirs. The research in this article will provide some reference material and guidance for the efficient development of shale reservoirs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Distributions of Trace Elements and Their Relationships With Heavy Minerals in Some Chinese Low-Rank Coals Empowering Rural Farming: Agrovoltaic Applications for Sustainable Agriculture Study on Hydraulic Fracture Propagation of Strong Heterogeneous Shale Based on Stress-Seepage Damage Coupling Model Study on the Full-Cycle Stress Evolution Law and Reasonable Size of Isolated Coal Pillar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1