Effect of pulsation intensity on flow and dispersion characteristics of single-pulsed dual parallel plane jets

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-12-03 DOI:10.1016/j.ijheatfluidflow.2024.109684
Y.A. Altaharwah , C.M. Hsu , R.H. Wang
{"title":"Effect of pulsation intensity on flow and dispersion characteristics of single-pulsed dual parallel plane jets","authors":"Y.A. Altaharwah ,&nbsp;C.M. Hsu ,&nbsp;R.H. Wang","doi":"10.1016/j.ijheatfluidflow.2024.109684","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of pulsation intensity on flow and dispersion characteristics of single-pulsed dual parallel plane jets was experimentally investigated in this study. A single jet from a pair of dual jets was pulsed by a loudspeaker. The flow evolution processes were examined using the laser-light sheet-assisted smoke flow visualization method. The visual spread of the jet flow was measured using the binary boundary edge detection technique. A hotwire anemometer was used to detect the instantaneous velocities, mean velocities, turbulence intensities, Lagrangian integral time, and length scales. The dispersion capabilities of the jet fluid were evaluated employing the tracer-gas concentration detection technique. Two characteristic flow modes, namely the <em>coherent vortices</em> and <em>vortex breakup</em>, could be classified based on pulsation intensity. At <em>I</em><sub>p</sub> &lt; 1.0, the flow was characterized by coherent vortices, which maintained coherence within one excitation cycle. At <em>I</em><sub>p</sub> &gt; 1.0, vortex breakup occurred, where vortices deformed, lost coherence, and transformed into puff-shaped vortical structures within one excitation cycle. The vortices emerging from the pulsed jet undergo deformation, evolving into puff-shaped vortices, and subsequently fragment into smaller turbulent eddies more quickly than the synchronized vortices from the non-pulsed jet. This leads to significant penetration and velocity fluctuations in the trajectory of the pulsed jet. Consequently, the overall spread width and concentration reduction index of the single-pulsed dual parallel plane jets exceed those of the non-pulsed dual parallel plane jets.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109684"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24004090","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of pulsation intensity on flow and dispersion characteristics of single-pulsed dual parallel plane jets was experimentally investigated in this study. A single jet from a pair of dual jets was pulsed by a loudspeaker. The flow evolution processes were examined using the laser-light sheet-assisted smoke flow visualization method. The visual spread of the jet flow was measured using the binary boundary edge detection technique. A hotwire anemometer was used to detect the instantaneous velocities, mean velocities, turbulence intensities, Lagrangian integral time, and length scales. The dispersion capabilities of the jet fluid were evaluated employing the tracer-gas concentration detection technique. Two characteristic flow modes, namely the coherent vortices and vortex breakup, could be classified based on pulsation intensity. At Ip < 1.0, the flow was characterized by coherent vortices, which maintained coherence within one excitation cycle. At Ip > 1.0, vortex breakup occurred, where vortices deformed, lost coherence, and transformed into puff-shaped vortical structures within one excitation cycle. The vortices emerging from the pulsed jet undergo deformation, evolving into puff-shaped vortices, and subsequently fragment into smaller turbulent eddies more quickly than the synchronized vortices from the non-pulsed jet. This leads to significant penetration and velocity fluctuations in the trajectory of the pulsed jet. Consequently, the overall spread width and concentration reduction index of the single-pulsed dual parallel plane jets exceed those of the non-pulsed dual parallel plane jets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Viscosity-driven clustering of heated polydispersed particles in subsonic jet flows Control of flow separation from an axisymmetric body using tangentially steady bowing jets Theoretical and numerical studies of heat and humidity transfer in underground ventilation corridor Quasi-one-dimensional mathematical model of the two-dimensional supersonic cavity mean flow Numerical simulation of fractional order double diffusive convective nanofluid flow in a wavy porous enclosure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1