Growth behavior of bubbles containing non-condensable gas in superheated cryogenic liquids

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED Cryogenics Pub Date : 2024-12-30 DOI:10.1016/j.cryogenics.2024.104016
Yonghua Huang, Xujin Qin
{"title":"Growth behavior of bubbles containing non-condensable gas in superheated cryogenic liquids","authors":"Yonghua Huang,&nbsp;Xujin Qin","doi":"10.1016/j.cryogenics.2024.104016","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble growth is one of the most critical concerns in flashing or cavitation in metastable superheated liquids. The bubble growth rate and heat and mass transfer rates across the boundary are essential for quantifying the flashing evaporation behavior. Prior simulations treated the bubble as a pure vapor, which dropped an important influencing factor driving bubble growth. A mathematical model is proposed for characterizing bubble growth in superheated cryogenic liquids, namely, liquid oxygen, hydrogen, and nitrogen. The model considers a non-condensable gas component in the bubble, which plays a significant role in the early stages of bubble growth. It not only influences the critical radius of the bubble but also affects the delay time of the growth. The behavior of bubbles in these cryogenic fluids was compared to that in water in terms of radius growth. The effect of the liquid state on the bubble radius was investigated. As expected, the bubble grew faster in the liquid at lower pressures and greater degrees of superheat. Bubbles with smaller critical radii require higher degrees of superheat or thermal disturbances to grow.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"146 ","pages":"Article 104016"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524002364","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bubble growth is one of the most critical concerns in flashing or cavitation in metastable superheated liquids. The bubble growth rate and heat and mass transfer rates across the boundary are essential for quantifying the flashing evaporation behavior. Prior simulations treated the bubble as a pure vapor, which dropped an important influencing factor driving bubble growth. A mathematical model is proposed for characterizing bubble growth in superheated cryogenic liquids, namely, liquid oxygen, hydrogen, and nitrogen. The model considers a non-condensable gas component in the bubble, which plays a significant role in the early stages of bubble growth. It not only influences the critical radius of the bubble but also affects the delay time of the growth. The behavior of bubbles in these cryogenic fluids was compared to that in water in terms of radius growth. The effect of the liquid state on the bubble radius was investigated. As expected, the bubble grew faster in the liquid at lower pressures and greater degrees of superheat. Bubbles with smaller critical radii require higher degrees of superheat or thermal disturbances to grow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
期刊最新文献
Measurement of the thermal expansion of bulk metallic glass in cryogenic temperature with a laser displacement method Construction of a precise measuring probe based on tunnel diode oscillator High-pressure growth effect on the properties of high-Tc iron-based superconductors: A short review Investigation of two-phase heat transfer coefficients of cryogenic nitrogen in 160-μm and 65-μm microchannels Study on the eddy current losses and thermal characteristic of a conduction-cooled HTS energy storage magnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1