Shengshi Zheng , Naikun Sun , Quanhui Zhang , Kang Zhao , Qin Dai , Xinguo Zhao , Juan Cheng , Jiaohong Huang
{"title":"Engineering the cryogenic magnetocaloric effect of Tm2O3 by oxygen vacancies","authors":"Shengshi Zheng , Naikun Sun , Quanhui Zhang , Kang Zhao , Qin Dai , Xinguo Zhao , Juan Cheng , Jiaohong Huang","doi":"10.1016/j.cryogenics.2025.104056","DOIUrl":null,"url":null,"abstract":"<div><div>Defect engineering is an effective means to improve the electronic structure and physicochemical properties of materials. In this work, the cryogenic magnetocaloric effect (MCE) of commercial Tm<sub>2</sub>O<sub>3</sub> was significantly improved by the introduction of oxygen vacancy (OV) defects. A series of monocrystalline Tm<sub>2</sub>O<sub>3</sub> powders (cubic structure, <em>Ia</em> <span><math><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover></math></span> space group) with high-level OV content was obtained by ball-milling (BM) the commercial counterpart for 3–12 h. Of these samples, the 9 h-ball milled Tm<sub>2</sub>O<sub>3</sub> sample (Tm<sub>2</sub>O<sub>3</sub>-9) has the highest ratio value of oxygen atoms near OV (O<sub>near OV</sub>) of 15.79 % and largest effective magnetic moment (<em>μ</em><sub>eff</sub>) of Tm<sup>3+</sup> ion of 6.8 μ<sub>B</sub> compared with the corresponding values of 8.06 % and 6.32 μ<sub>B</sub> for the commercial Tm<sub>2</sub>O<sub>3</sub>. Consistently, Tm<sub>2</sub>O<sub>3</sub>-9 has the best MCE performance with the maximal magnetic-entropy change (Δ<em>S</em><sub>M</sub>) and the refrigerant capacity (<em>RC</em>) of 7.0 J⋅kg<sup>−1</sup>⋅K<sup>−1</sup> and 96.8 J⋅kg<sup>−1</sup> in 0–5 T, respectively as compared to 4.2J⋅kg<sup>−1</sup>⋅K<sup>−1</sup> and 66.9 J⋅kg<sup>−1</sup> for the commercial Tm<sub>2</sub>O<sub>3</sub>. Further increasing the BM time to 12h, the OV content almost remains unchanged, accompanied by a minor reduction of Δ<em>S</em><sub>M</sub> and <em>RC</em> due to the decrease of grain size. This work provides a novel approach for enhancing the MCE of rare earth-based oxides.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"147 ","pages":"Article 104056"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525000347","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Defect engineering is an effective means to improve the electronic structure and physicochemical properties of materials. In this work, the cryogenic magnetocaloric effect (MCE) of commercial Tm2O3 was significantly improved by the introduction of oxygen vacancy (OV) defects. A series of monocrystalline Tm2O3 powders (cubic structure, Ia space group) with high-level OV content was obtained by ball-milling (BM) the commercial counterpart for 3–12 h. Of these samples, the 9 h-ball milled Tm2O3 sample (Tm2O3-9) has the highest ratio value of oxygen atoms near OV (Onear OV) of 15.79 % and largest effective magnetic moment (μeff) of Tm3+ ion of 6.8 μB compared with the corresponding values of 8.06 % and 6.32 μB for the commercial Tm2O3. Consistently, Tm2O3-9 has the best MCE performance with the maximal magnetic-entropy change (ΔSM) and the refrigerant capacity (RC) of 7.0 J⋅kg−1⋅K−1 and 96.8 J⋅kg−1 in 0–5 T, respectively as compared to 4.2J⋅kg−1⋅K−1 and 66.9 J⋅kg−1 for the commercial Tm2O3. Further increasing the BM time to 12h, the OV content almost remains unchanged, accompanied by a minor reduction of ΔSM and RC due to the decrease of grain size. This work provides a novel approach for enhancing the MCE of rare earth-based oxides.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics