Xingliang Zhu , Xiaoyu Dong , Weiwei Yu , Huawei Liang , Bin Kong
{"title":"Refactored Maskformer: Refactor localization and classification for improved universal image segmentation","authors":"Xingliang Zhu , Xiaoyu Dong , Weiwei Yu , Huawei Liang , Bin Kong","doi":"10.1016/j.displa.2025.102981","DOIUrl":null,"url":null,"abstract":"<div><div>The introduction of DEtection TRansformers (DETR) has marked a new era for universal image segmentation in computer vision. However, methods that use shared queries and attention layers for simultaneous localization and classification often encounter inter-task optimization conflicts. In this paper, we propose a novel architecture called <strong>Refactored Maskformer</strong>, which builds upon the Mask2Former through two key modifications: Decoupler and Reconciler. The Decoupler separates decoding pathways for localization and classification, enabling task-specific query and attention layer learning. Additionally, it employs a unified masked attention to confine the regions of interest for both tasks within the same object, along with a query Interactive-Attention layer to enhance task interaction. In the Reconciler module, we mitigate the optimization conflict issue by introducing localization supervised matching cost and task alignment learning loss functions. These functions aim to encourage high localization accuracy samples, while reducing the impact of high classification confidence samples with low localization accuracy on network optimization. Extensive experimental results demonstrate that our Refactored Maskformer achieves performance comparable to existing state-of-the-art models across all unified tasks, surpassing our baseline network, Mask2former, with 1.2% PQ on COCO, 6.8% AP on ADE20k, and 1.1% mIoU on Cityscapes. The code is available at <span><span>https://github.com/leonzx7/Refactored-Maskformer</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102981"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000186","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of DEtection TRansformers (DETR) has marked a new era for universal image segmentation in computer vision. However, methods that use shared queries and attention layers for simultaneous localization and classification often encounter inter-task optimization conflicts. In this paper, we propose a novel architecture called Refactored Maskformer, which builds upon the Mask2Former through two key modifications: Decoupler and Reconciler. The Decoupler separates decoding pathways for localization and classification, enabling task-specific query and attention layer learning. Additionally, it employs a unified masked attention to confine the regions of interest for both tasks within the same object, along with a query Interactive-Attention layer to enhance task interaction. In the Reconciler module, we mitigate the optimization conflict issue by introducing localization supervised matching cost and task alignment learning loss functions. These functions aim to encourage high localization accuracy samples, while reducing the impact of high classification confidence samples with low localization accuracy on network optimization. Extensive experimental results demonstrate that our Refactored Maskformer achieves performance comparable to existing state-of-the-art models across all unified tasks, surpassing our baseline network, Mask2former, with 1.2% PQ on COCO, 6.8% AP on ADE20k, and 1.1% mIoU on Cityscapes. The code is available at https://github.com/leonzx7/Refactored-Maskformer.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.