UnSP: Improving event-to-image reconstruction with uncertainty guided self-paced learning

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2025-02-05 DOI:10.1016/j.displa.2025.102985
Jianye Yang, Xiaolin Zhang, Shaofan Wang, Yanfeng Sun, Baocai Yin
{"title":"UnSP: Improving event-to-image reconstruction with uncertainty guided self-paced learning","authors":"Jianye Yang,&nbsp;Xiaolin Zhang,&nbsp;Shaofan Wang,&nbsp;Yanfeng Sun,&nbsp;Baocai Yin","doi":"10.1016/j.displa.2025.102985","DOIUrl":null,"url":null,"abstract":"<div><div>Asynchronous events, produced by event cameras, possess several advantages against traditional cameras: high temporal resolution, dynamic range, etc. Traditional event-to-image reconstruction methods adopt computer vision techniques and establish a correspondence between event streams and the reconstruction image. Despite great successes, those methods ignore filtering the non-confident event frames, and hence produce unsatisfactory reconstruction results. In this paper, we propose a plug-and-play model by using uncertainty guided self-paced learning (dubbed UnSP) for finetuning the event-to-image reconstruction process. The key observation of UnSP is that, different event streams, though corresponding to a common reconstruction image, serve as different functions during the training process of event-to-image reconstruction networks (e.g., shape, intensity, details are extracted in different training phases of networks). Typically, UnSP proposes an uncertainty modeling for each event frame based on its reconstruction errors induced by three metrics, and then filters confident event frames in a self-paced learning fashion. Experiments on the six subsets of the Event Camera Dataset shows that UnSP can be incorporated with any event-to-image reconstruction networks seamlessly and achieve significant improvement in both quantitative and qualitative results. In summary, the uncertainty-driven adaptive sampling and self-learning mechanisms of UnSP, coupled with its plug-and-play capability, enhance the robustness, efficiency, and versatility for event-to-image reconstruction. Code is available at <span><span>https://github.com/wangsfan/UnSP</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102985"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000228","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Asynchronous events, produced by event cameras, possess several advantages against traditional cameras: high temporal resolution, dynamic range, etc. Traditional event-to-image reconstruction methods adopt computer vision techniques and establish a correspondence between event streams and the reconstruction image. Despite great successes, those methods ignore filtering the non-confident event frames, and hence produce unsatisfactory reconstruction results. In this paper, we propose a plug-and-play model by using uncertainty guided self-paced learning (dubbed UnSP) for finetuning the event-to-image reconstruction process. The key observation of UnSP is that, different event streams, though corresponding to a common reconstruction image, serve as different functions during the training process of event-to-image reconstruction networks (e.g., shape, intensity, details are extracted in different training phases of networks). Typically, UnSP proposes an uncertainty modeling for each event frame based on its reconstruction errors induced by three metrics, and then filters confident event frames in a self-paced learning fashion. Experiments on the six subsets of the Event Camera Dataset shows that UnSP can be incorporated with any event-to-image reconstruction networks seamlessly and achieve significant improvement in both quantitative and qualitative results. In summary, the uncertainty-driven adaptive sampling and self-learning mechanisms of UnSP, coupled with its plug-and-play capability, enhance the robustness, efficiency, and versatility for event-to-image reconstruction. Code is available at https://github.com/wangsfan/UnSP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
Refactored Maskformer: Refactor localization and classification for improved universal image segmentation UnSP: Improving event-to-image reconstruction with uncertainty guided self-paced learning Chinese sign language recognition and translation with virtual digital human dataset Exploring user engagement by diagnosing visual guides in onboarding screens with linear regression and XGBoost High-precision 3D teeth reconstruction based on five-view intra-oral photos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1