Piotr Cyganowski , Włodzimierz Tylus , Sebastian Kinas , Piotr Jamróz
{"title":"3D-printed packed bed reactor for continuous catalytic hydrogenation of nitroaromatic compounds","authors":"Piotr Cyganowski , Włodzimierz Tylus , Sebastian Kinas , Piotr Jamróz","doi":"10.1016/j.cep.2024.110141","DOIUrl":null,"url":null,"abstract":"<div><div>Aromatic amines (AAMs) are essential compounds for producing a wide range of industrial and pharmaceutical products. However, traditional synthesis methods using nitroaromatic compounds (NACs) pose environmental and health risks due to byproduct contamination and the carcinogenic nature of NACs. In this context, this study introduces a novel catalyst containing rhenium (<em>Re</em>) active sites. While this approach does not eliminate the carcinogenic risks associated with NACs, it aims to improve process efficiency. The catalyst, synthesized within a styrene-based matrix functionalized with 1,1′-carbonyldiimidazole, combines high affinity for NACs with the catalytic prowess of <em>Re</em> that may be also a tool in achieving process selectivity. Characterization via XPS and HRTEM confirmed the presence of highly dispersed <em>Re</em> species within the polymer matrix. The catalyst demonstrated superior activity in batch hydrogenation of various NACs, achieving high conversion rates. A 3D-printed packed bed reactor (PBR) was then developed for continuous flow-mode reduction of 4-nitrophenol (4-NP), achieving significant processing capacity and highlighting its potential for scalable applications. This innovative approach not only addresses environmental concerns associated with NACs but also enhances the efficiency of AAM production, presenting a viable solution for industrial processes.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"208 ","pages":"Article 110141"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124004793","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Aromatic amines (AAMs) are essential compounds for producing a wide range of industrial and pharmaceutical products. However, traditional synthesis methods using nitroaromatic compounds (NACs) pose environmental and health risks due to byproduct contamination and the carcinogenic nature of NACs. In this context, this study introduces a novel catalyst containing rhenium (Re) active sites. While this approach does not eliminate the carcinogenic risks associated with NACs, it aims to improve process efficiency. The catalyst, synthesized within a styrene-based matrix functionalized with 1,1′-carbonyldiimidazole, combines high affinity for NACs with the catalytic prowess of Re that may be also a tool in achieving process selectivity. Characterization via XPS and HRTEM confirmed the presence of highly dispersed Re species within the polymer matrix. The catalyst demonstrated superior activity in batch hydrogenation of various NACs, achieving high conversion rates. A 3D-printed packed bed reactor (PBR) was then developed for continuous flow-mode reduction of 4-nitrophenol (4-NP), achieving significant processing capacity and highlighting its potential for scalable applications. This innovative approach not only addresses environmental concerns associated with NACs but also enhances the efficiency of AAM production, presenting a viable solution for industrial processes.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.