{"title":"RT-SVM: Channel modeling and analysis for indoor terahertz communication scenarios","authors":"Mohamed El Jbari, Mohamed Moussaoui","doi":"10.1016/j.nancom.2024.100551","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the increasing demands for wireless communication networks and information system applications, the wireless sector must meet the pressing requirement for high-speed technological advances. The terahertz (THz) frequency band, spanning 0.3 to 10 THz, is of significant interest in current technological innovations and academic research in telecommunications. The THz frequency band has unique properties, including high time-resolving power (femtosecond) and low absorption. This paper proposes a THz propagation ultra-wideband (UWB) channel model and coding scheme for indoor environments starting from 0.3 THz. First, we investigated the propagation path loss model by considering the effects of transmitter dimensions, molecular absorption, and attenuation as functions of frequency and distance. We developed models for power propagation delay, multiple input multiple output (MIMO) systems and discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) response channels. Using the standard Saleh–Valenzuela model combined with Ray-tracing (RT-SVM), we studied the transmission of THz signals in indoor scenarios. We introduced physical parameters relevant to the THz indoor channel, such as line-of-sight (LoS) path loss, power distributions, temporal and spatial properties, and associations between THz multipath properties. These parameters were integrated with the RT-SVM channel model and applied to THz indoor communication. Numerical simulations demonstrate that the proposed hybrid channel model enhances THz system performance and outperforms traditional statistical and geometric-based stochastic channel models in terms of temporal and spatial dimensions, contributing to frequency loss variations.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100551"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000577","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the increasing demands for wireless communication networks and information system applications, the wireless sector must meet the pressing requirement for high-speed technological advances. The terahertz (THz) frequency band, spanning 0.3 to 10 THz, is of significant interest in current technological innovations and academic research in telecommunications. The THz frequency band has unique properties, including high time-resolving power (femtosecond) and low absorption. This paper proposes a THz propagation ultra-wideband (UWB) channel model and coding scheme for indoor environments starting from 0.3 THz. First, we investigated the propagation path loss model by considering the effects of transmitter dimensions, molecular absorption, and attenuation as functions of frequency and distance. We developed models for power propagation delay, multiple input multiple output (MIMO) systems and discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) response channels. Using the standard Saleh–Valenzuela model combined with Ray-tracing (RT-SVM), we studied the transmission of THz signals in indoor scenarios. We introduced physical parameters relevant to the THz indoor channel, such as line-of-sight (LoS) path loss, power distributions, temporal and spatial properties, and associations between THz multipath properties. These parameters were integrated with the RT-SVM channel model and applied to THz indoor communication. Numerical simulations demonstrate that the proposed hybrid channel model enhances THz system performance and outperforms traditional statistical and geometric-based stochastic channel models in terms of temporal and spatial dimensions, contributing to frequency loss variations.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.