Redox-Responsive Cleavable Polymeric Brush Coated Magnetic Nanoparticles: Fabrication and Post-Polymerization Modification for Cellular Targeting.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2025-02-04 DOI:10.1021/acs.biomac.4c01368
Nora Ejderyan, Yavuz Oz, Rana Sanyal, Amitav Sanyal
{"title":"Redox-Responsive Cleavable Polymeric Brush Coated Magnetic Nanoparticles: Fabrication and Post-Polymerization Modification for Cellular Targeting.","authors":"Nora Ejderyan, Yavuz Oz, Rana Sanyal, Amitav Sanyal","doi":"10.1021/acs.biomac.4c01368","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer brush-coated magnetic nanoparticles find applications in areas from diagnostics to drug delivery. Generally, the brushes are irreversibly tethered onto the nanoparticle surface through robust chemical linkages to withstand diverse environments. The ability to trigger the release of the polymer brushes from the nanoparticle surface once they reach the intracellular environment would be a useful attribute. In this study, we report polymer brushes that undergo release from the nanoparticle surface in a redox-responsive fashion. Furthermore, cleaving the polymer brush also enables precise determination of their molecular weight. Also, we show that fluorescently labeled polymer brushes undergo chain-end functionalization using maleimide-containing dye and peptides. Installing integrin-targeting peptides onto the surface enhances their cellular internalization. One could envision that the redox-responsive polymer brush-coated magnetic nanoparticles disclosed here would be an attractive platform for applications where intracellular cleavage of polymeric chains would enhance their performance.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01368","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer brush-coated magnetic nanoparticles find applications in areas from diagnostics to drug delivery. Generally, the brushes are irreversibly tethered onto the nanoparticle surface through robust chemical linkages to withstand diverse environments. The ability to trigger the release of the polymer brushes from the nanoparticle surface once they reach the intracellular environment would be a useful attribute. In this study, we report polymer brushes that undergo release from the nanoparticle surface in a redox-responsive fashion. Furthermore, cleaving the polymer brush also enables precise determination of their molecular weight. Also, we show that fluorescently labeled polymer brushes undergo chain-end functionalization using maleimide-containing dye and peptides. Installing integrin-targeting peptides onto the surface enhances their cellular internalization. One could envision that the redox-responsive polymer brush-coated magnetic nanoparticles disclosed here would be an attractive platform for applications where intracellular cleavage of polymeric chains would enhance their performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Electrospinning of Self-Assembling Oligopeptides into Nanofiber Mats: The Impact of Peptide Composition and End Groups. Simulation Study of the Water Ordering Effect of the β-(1,3)-Glucan Callose Biopolymer. Acetylation of Short Glycopeptides Enables Phase Separation. Redox-Responsive Cleavable Polymeric Brush Coated Magnetic Nanoparticles: Fabrication and Post-Polymerization Modification for Cellular Targeting. Tetravalent Virus-like Particles Engineered To Display Envelope Domain IIIs of Four Dengue Serotypes in Silkworm as Vaccine Candidates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1