Robinson Cortes-Huerto, Nancy C Forero-Martinez, Pietro Ballone
{"title":"Simulation Study of the Water Ordering Effect of the β-(1,3)-Glucan Callose Biopolymer.","authors":"Robinson Cortes-Huerto, Nancy C Forero-Martinez, Pietro Ballone","doi":"10.1021/acs.biomac.4c01524","DOIUrl":null,"url":null,"abstract":"<p><p>Callose, a polysaccharide closely related to cellulose, plays a crucial role in plant development and resistance to environmental stress. These functions are often attributed to the enhancement by callose of the mechanical properties of semiordered assemblies of cellulose nanofibers. A recent study, however, suggested that the enhancement of mechanical properties by callose might be due to its ability to order neighboring water molecules, resulting in the formation, up to room temperature, of solid-like water-callose domains. This hypothesis is tested by atomistic molecular dynamics simulations using <i>ad hoc</i> models consisting of callose and cellulose hydrogels. The simulation results, however, do not show significant crystallinity in the callose/water samples. Moreover, the computation of the Young's modulus gives nearly the same result in callose/water and in cellulose/water samples, leaving callose's ability to link cellulose nanofibers into networks as the most likely mechanism underlying the strengthening of the plant cell wall.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01524","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Callose, a polysaccharide closely related to cellulose, plays a crucial role in plant development and resistance to environmental stress. These functions are often attributed to the enhancement by callose of the mechanical properties of semiordered assemblies of cellulose nanofibers. A recent study, however, suggested that the enhancement of mechanical properties by callose might be due to its ability to order neighboring water molecules, resulting in the formation, up to room temperature, of solid-like water-callose domains. This hypothesis is tested by atomistic molecular dynamics simulations using ad hoc models consisting of callose and cellulose hydrogels. The simulation results, however, do not show significant crystallinity in the callose/water samples. Moreover, the computation of the Young's modulus gives nearly the same result in callose/water and in cellulose/water samples, leaving callose's ability to link cellulose nanofibers into networks as the most likely mechanism underlying the strengthening of the plant cell wall.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.