In renal proximal tubular epithelial cells of the hibernator Syrian hamster, anoxia-reoxygenation-induced reactive oxygen species bursts do not trigger a DNA damage response and cellular senescence.
Georgios Pissas, Maria Divani, Maria Tziastoudi, Christina Poulianiti, Maria-Anna Polyzou-Konsta, Evangelos Lykotsetas, Ioannis Stefanidis, Theodoros Eleftheriadis
{"title":"In renal proximal tubular epithelial cells of the hibernator Syrian hamster, anoxia-reoxygenation-induced reactive oxygen species bursts do not trigger a DNA damage response and cellular senescence.","authors":"Georgios Pissas, Maria Divani, Maria Tziastoudi, Christina Poulianiti, Maria-Anna Polyzou-Konsta, Evangelos Lykotsetas, Ioannis Stefanidis, Theodoros Eleftheriadis","doi":"10.1007/s00360-025-01604-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion (I-R) injury represents a predominant etiology of acute kidney injury (AKI), for which effective treatments remain unavailable. In contrast, hibernating mammals exhibit notable resistance to cell death induced by I-R injury. However, the impact of I-R injury on cellular senescence-an important factor in AKI-has not been extensively studied in these species. Comparative biology may offer novel therapeutic insights. Renal proximal tubular epithelial cells (RPTECs) from the native hibernator Syrian hamster or mouse RPTECs were subjected to anoxia-reoxygenation. Proteins involved in DNA damage response (DDR) and cellular senescence were assessed using western blotting, reactive oxygen species (ROS) levels and cell death were quantified colorimetrically, and IL-6 with ELISA. Anoxia-reoxygenation induced oxidative stress in both mouse and hamster RPTECs; however, cell death was observed exclusively in mouse cells. While anoxia-reoxygenation elicited a DDR and subsequent senescence in mouse RPTECs, such responses were not detected in hamster RPTECs. Thus, RPTECs from the Syrian hamster exhibited increased ROS production upon reoxygenation but did not show DDR or cellular senescence. Further research is required to elucidate the specific protective molecular mechanisms in hibernators, which could potentially lead to the development of novel therapeutic approaches for I-R injury in non-hibernating species, including humans.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01604-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemia-reperfusion (I-R) injury represents a predominant etiology of acute kidney injury (AKI), for which effective treatments remain unavailable. In contrast, hibernating mammals exhibit notable resistance to cell death induced by I-R injury. However, the impact of I-R injury on cellular senescence-an important factor in AKI-has not been extensively studied in these species. Comparative biology may offer novel therapeutic insights. Renal proximal tubular epithelial cells (RPTECs) from the native hibernator Syrian hamster or mouse RPTECs were subjected to anoxia-reoxygenation. Proteins involved in DNA damage response (DDR) and cellular senescence were assessed using western blotting, reactive oxygen species (ROS) levels and cell death were quantified colorimetrically, and IL-6 with ELISA. Anoxia-reoxygenation induced oxidative stress in both mouse and hamster RPTECs; however, cell death was observed exclusively in mouse cells. While anoxia-reoxygenation elicited a DDR and subsequent senescence in mouse RPTECs, such responses were not detected in hamster RPTECs. Thus, RPTECs from the Syrian hamster exhibited increased ROS production upon reoxygenation but did not show DDR or cellular senescence. Further research is required to elucidate the specific protective molecular mechanisms in hibernators, which could potentially lead to the development of novel therapeutic approaches for I-R injury in non-hibernating species, including humans.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.