The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats.

Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood
{"title":"The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats.","authors":"Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood","doi":"10.1007/s00360-025-01610-7","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01610-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
期刊最新文献
The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats. Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus. Thermal sensitivity of respiration and ROS emission of muscle mitochondria in deer mice. Effect of housing density on cellular and humoral immunity, hematology in striped hamsters. A first glimpse into circulating ghrelin patterns of thin-billed prion chicks (Pachyptila belcheri).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1