Preferential use of organic acids over sugars by soil microbes in simulated root exudation

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-02-05 DOI:10.1016/j.soilbio.2025.109738
Julia Wiesenbauer, Stefan Gorka, Kian Jenab, Raphael Schuster, Naresh Kumar, Cornelia Rottensteiner, Alexander König, Stephan Kraemer, Erich Inselsbacher, Christina Kaiser
{"title":"Preferential use of organic acids over sugars by soil microbes in simulated root exudation","authors":"Julia Wiesenbauer, Stefan Gorka, Kian Jenab, Raphael Schuster, Naresh Kumar, Cornelia Rottensteiner, Alexander König, Stephan Kraemer, Erich Inselsbacher, Christina Kaiser","doi":"10.1016/j.soilbio.2025.109738","DOIUrl":null,"url":null,"abstract":"Sugars and organic acids, primary components in plant root exudates, are thought to enhance microbial decomposition of organic matter in the rhizosphere. However, their specific impacts on microbial activity and nutrient mobilisation remain poorly understood. Here, we simulated passive root exudation to investigate the distinct effects of sugars and organic acids on microbial metabolism in the rhizosphere. We released <sup>13</sup>C-labelled sugars and/or organic acids via reverse microdialysis into intact meadow and forest soils over 6-hours. We measured substrate-induced microbial respiration, soil organic matter mineralization, metabolite concentrations, and substrate incorporation into lipid-derived fatty acids. Our results reveal a pronounced microbial preference for organic acids over sugars, with organic acids being removed faster from the exudation spot and preferentially respired by microbes. Unlike sugars, organic acids increased concentrations of microbial metabolic byproducts and cations (K, Ca, Mg) near the exudation spot. Our results challenge the prevailing assumption that sugars are the most readily available and rapidly consumed substrates for soil microbes. Microbial preference for organic acids indicates a trade-off between rapid biomass growth and ATP yield. Our findings underscore the significant role of exudate composition in influencing microbial dynamics and nutrient availability, and emphasize the importance of biotic and abiotic feedback mechanisms in the rhizosphere in regulating root exudation.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"79 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109738","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Sugars and organic acids, primary components in plant root exudates, are thought to enhance microbial decomposition of organic matter in the rhizosphere. However, their specific impacts on microbial activity and nutrient mobilisation remain poorly understood. Here, we simulated passive root exudation to investigate the distinct effects of sugars and organic acids on microbial metabolism in the rhizosphere. We released 13C-labelled sugars and/or organic acids via reverse microdialysis into intact meadow and forest soils over 6-hours. We measured substrate-induced microbial respiration, soil organic matter mineralization, metabolite concentrations, and substrate incorporation into lipid-derived fatty acids. Our results reveal a pronounced microbial preference for organic acids over sugars, with organic acids being removed faster from the exudation spot and preferentially respired by microbes. Unlike sugars, organic acids increased concentrations of microbial metabolic byproducts and cations (K, Ca, Mg) near the exudation spot. Our results challenge the prevailing assumption that sugars are the most readily available and rapidly consumed substrates for soil microbes. Microbial preference for organic acids indicates a trade-off between rapid biomass growth and ATP yield. Our findings underscore the significant role of exudate composition in influencing microbial dynamics and nutrient availability, and emphasize the importance of biotic and abiotic feedback mechanisms in the rhizosphere in regulating root exudation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Microbial carbon use efficiency of mineral-associated organic matter is related to its desorbability Interactions between earthworm species and soil type influence the porosity of earthworm casts Preferential use of organic acids over sugars by soil microbes in simulated root exudation Organic cropping systems alter metabolic potential and carbon, nitrogen and phosphorus cycling capacity of soil microbial communities Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1