Interactions between earthworm species and soil type influence the porosity of earthworm casts

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-02-06 DOI:10.1016/j.soilbio.2025.109739
Issifou Amadou, Arnaud Mazurier, Laurent Caner, Yacouba Zi, Cornelia Rumpel, Nicolas Bottinelli
{"title":"Interactions between earthworm species and soil type influence the porosity of earthworm casts","authors":"Issifou Amadou, Arnaud Mazurier, Laurent Caner, Yacouba Zi, Cornelia Rumpel, Nicolas Bottinelli","doi":"10.1016/j.soilbio.2025.109739","DOIUrl":null,"url":null,"abstract":"Earthworms significantly influence soil structure and associated ecosystem services, but the effect of different earthworm species and soil types on the physical organization of casts remains poorly understood. This study aims to shed light on the importance of earthworm species, soil type and their interactions in shaping cast microstructure. Using a microcosm experiment and X-ray microtomography image analysis, we examined the porosity and pore connectivity of casts produced by nine different temperate earthworm species in two contrasting soil types (Alluviosol and Cambisol). Our results showed that generally casts were characterized by lower overall porosity (reduced by 39-86% in Cambisol and 14-64% in Alluviosol) and pore connectivity (up to 76% lower in Cambisol) than control aggregates formed without earthworm activity, but they showed higher bioporosity (up to 50%). Both, earthworm species and soil type influenced pore properties, and the interaction of both explained most of the variability. In addition, we found no clear link between ecological categories of earthworms and the cast pore characteristics, highlighting the difficulty of generalizing species effects on cast microstructural properties. These results call for more nuanced approaches in future research to better predict earthworm effects on physical soil properties and resulting ecosystem services, considering both species-specific traits and their interactions with different soil environments.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"164 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109739","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Earthworms significantly influence soil structure and associated ecosystem services, but the effect of different earthworm species and soil types on the physical organization of casts remains poorly understood. This study aims to shed light on the importance of earthworm species, soil type and their interactions in shaping cast microstructure. Using a microcosm experiment and X-ray microtomography image analysis, we examined the porosity and pore connectivity of casts produced by nine different temperate earthworm species in two contrasting soil types (Alluviosol and Cambisol). Our results showed that generally casts were characterized by lower overall porosity (reduced by 39-86% in Cambisol and 14-64% in Alluviosol) and pore connectivity (up to 76% lower in Cambisol) than control aggregates formed without earthworm activity, but they showed higher bioporosity (up to 50%). Both, earthworm species and soil type influenced pore properties, and the interaction of both explained most of the variability. In addition, we found no clear link between ecological categories of earthworms and the cast pore characteristics, highlighting the difficulty of generalizing species effects on cast microstructural properties. These results call for more nuanced approaches in future research to better predict earthworm effects on physical soil properties and resulting ecosystem services, considering both species-specific traits and their interactions with different soil environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Microbial carbon use efficiency of mineral-associated organic matter is related to its desorbability Interactions between earthworm species and soil type influence the porosity of earthworm casts Preferential use of organic acids over sugars by soil microbes in simulated root exudation Organic cropping systems alter metabolic potential and carbon, nitrogen and phosphorus cycling capacity of soil microbial communities Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1