Cerebellum KCC2 protein expression plasticity in response to cerebral cortical stroke

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemistry international Pub Date : 2025-02-03 DOI:10.1016/j.neuint.2025.105939
Shamseldin Metwally , Okan Capuk , Jun Wang , Mohammad Iqbal H. Bhuiyan , Qiang Li , Kathiravan Kaliyappan , Bo Chen , Daryl Fields , Dandan Sun
{"title":"Cerebellum KCC2 protein expression plasticity in response to cerebral cortical stroke","authors":"Shamseldin Metwally ,&nbsp;Okan Capuk ,&nbsp;Jun Wang ,&nbsp;Mohammad Iqbal H. Bhuiyan ,&nbsp;Qiang Li ,&nbsp;Kathiravan Kaliyappan ,&nbsp;Bo Chen ,&nbsp;Daryl Fields ,&nbsp;Dandan Sun","doi":"10.1016/j.neuint.2025.105939","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Recent evidence suggests extra-cortical adaptations within the cerebellum may contribute to motor recovery in patients with cortical ischemic strokes. The molecular/cellular adaptations enabling this effect to have not been identified. Chloride transport proteins (NKCC1 and KCC2) are important regulators of neuronal transmission and may underlie adaptive changes following ischemic stroke.</div></div><div><h3>Objective</h3><div>Examine changes in cerebellar NKCC1 and KCC2 protein expression following cortical ischemic stroke.</div></div><div><h3>Methods</h3><div>Adult C57BL/6J male mice underwent sham or the left middle cerebral artery occlusion (tMCAo)-induced ischemic stroke. Changes of NKCC1 and KCC2 proteins within the deep cerebellar nuclei (DCN) were assessed by immunofluorescence staining.</div></div><div><h3>Results</h3><div>tMCAo induced selective infarct lesion in the left striatum and cortex of the stroke mice but not in other brain regions including cerebellum. The inwardly directed chloride transporter NKCC1 was equivocally expressed within bi-hemispheric DCN of both sham control and stroke mice. In contrast, the outwardly directed chloride transporter KCC2 protein expression was significantly higher in the bi-hemispheric DCN of stroke brains, compared to sham controls. Double immunostaining analysis revealed a statistically significant increase in KCC2 intensity within VGLUT-1<sup>+</sup> neurons of the ipsilateral DCN of the stroke mice, but not in the VGAT<sup>+</sup> neurons.</div></div><div><h3>Conclusions</h3><div>Ischemic cortical stroke stimulates KCC2 protein expression in the DCN VGLUT-1<sup>+</sup> neurons, without a change in NKCC1 protein expression.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"184 ","pages":"Article 105939"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000129","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Recent evidence suggests extra-cortical adaptations within the cerebellum may contribute to motor recovery in patients with cortical ischemic strokes. The molecular/cellular adaptations enabling this effect to have not been identified. Chloride transport proteins (NKCC1 and KCC2) are important regulators of neuronal transmission and may underlie adaptive changes following ischemic stroke.

Objective

Examine changes in cerebellar NKCC1 and KCC2 protein expression following cortical ischemic stroke.

Methods

Adult C57BL/6J male mice underwent sham or the left middle cerebral artery occlusion (tMCAo)-induced ischemic stroke. Changes of NKCC1 and KCC2 proteins within the deep cerebellar nuclei (DCN) were assessed by immunofluorescence staining.

Results

tMCAo induced selective infarct lesion in the left striatum and cortex of the stroke mice but not in other brain regions including cerebellum. The inwardly directed chloride transporter NKCC1 was equivocally expressed within bi-hemispheric DCN of both sham control and stroke mice. In contrast, the outwardly directed chloride transporter KCC2 protein expression was significantly higher in the bi-hemispheric DCN of stroke brains, compared to sham controls. Double immunostaining analysis revealed a statistically significant increase in KCC2 intensity within VGLUT-1+ neurons of the ipsilateral DCN of the stroke mice, but not in the VGAT+ neurons.

Conclusions

Ischemic cortical stroke stimulates KCC2 protein expression in the DCN VGLUT-1+ neurons, without a change in NKCC1 protein expression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
期刊最新文献
Temporal and spatial expression of Phosphodiesterase-4B after sciatic nerve compression in rats and its mechanism of action on sciatic nerve repair. Cerebellum KCC2 protein expression plasticity in response to cerebral cortical stroke CB1 receptor signaling: Linking neuroplasticity, neuronal types, and mental health outcomes Editorial Board VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1