{"title":"Low-temperature growth of wafer-scale amorphous boron nitride films with low-dielectric-constant and controllable thicknesses.","authors":"Hang Zheng, Zihao Wan, Wenna Tang, Xianlei Huang, Zhenjia Zhou, Weilin Liu, Chao Wang, Guowen Yuan, Libo Gao","doi":"10.1088/1361-6528/adb293","DOIUrl":null,"url":null,"abstract":"<p><p>Amorphous boron nitride (aBN) films, with extremely low relative dielectric constant (<i>κ</i>) and chemical inertness, are excellent insulation and packaging materials for electronic device interconnection. It is of great significance to prepare the low-<i>κ</i>aBN films with controllable thickness, but there are still some limitations to achieve the goal. In this study, we succeed in growing wafer-scale aBN films with specific thicknesses from 1.2 to 4.0 nm by varying the growth time and temperature. The thickness of the films increases linearly with growth time and the crystallinity of BN films is precisely controlled by the growth temperature. The preferred temperature for aBN films ranges from 200<b>°</b>C to 400<b>°</b>C. Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscope all confirm the amorphous feature. These films are wafer-scale uniformity and have an ultra-flat surface, with excellent thermal stability and corrosion resistance. Particularly, the growth temperature affects the<i>κ</i>value and breakdown voltage of aBN films. The aBN films grown at 200<b>°</b>C have the lowest<i>κ</i>value of 1.66 at 100 kHz, along with the breakdown field strength of 5.5 MV cm<sup>-1</sup>. We believe that wafer-level aBN films with various thicknesses can bring new opportunities for the development and application of nanoscale electrical devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb293","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Amorphous boron nitride (aBN) films, with extremely low relative dielectric constant (κ) and chemical inertness, are excellent insulation and packaging materials for electronic device interconnection. It is of great significance to prepare the low-κaBN films with controllable thickness, but there are still some limitations to achieve the goal. In this study, we succeed in growing wafer-scale aBN films with specific thicknesses from 1.2 to 4.0 nm by varying the growth time and temperature. The thickness of the films increases linearly with growth time and the crystallinity of BN films is precisely controlled by the growth temperature. The preferred temperature for aBN films ranges from 200°C to 400°C. Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscope all confirm the amorphous feature. These films are wafer-scale uniformity and have an ultra-flat surface, with excellent thermal stability and corrosion resistance. Particularly, the growth temperature affects theκvalue and breakdown voltage of aBN films. The aBN films grown at 200°C have the lowestκvalue of 1.66 at 100 kHz, along with the breakdown field strength of 5.5 MV cm-1. We believe that wafer-level aBN films with various thicknesses can bring new opportunities for the development and application of nanoscale electrical devices.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.