Seok-Beom Seo, Jong-Goog Lee, Jae-Seon Yu, Jae-Hyun Kim, Serang Jung, Gumin Kang, Hyungduk Ko, Run Hu, Eungkyu Lee, Sun-Kyung Kim
{"title":"Visible transparency modulated cooling windows using pseudorandom dielectric multilayers","authors":"Seok-Beom Seo, Jong-Goog Lee, Jae-Seon Yu, Jae-Hyun Kim, Serang Jung, Gumin Kang, Hyungduk Ko, Run Hu, Eungkyu Lee, Sun-Kyung Kim","doi":"10.1515/nanoph-2024-0619","DOIUrl":null,"url":null,"abstract":"The increasing global temperatures have escalated the demand for indoor cooling, thus requiring energy-saving solutions. Traditional approaches often integrate metal layers in cooling windows to block near-infrared (NIR) sunlight, which, albeit effective, lack the broad modulation of visible transmission and lead to heat accumulation due to sunlight absorption. Here, we address these limitations by developing cooling windows using ZnS/MgF<jats:sub>2</jats:sub> multilayers, optimized through a binary optimization-based active learning process. We demonstrated that these multilayers, with a total thickness below 1 µm, effectively reduced indoor temperatures by blocking NIR sunlight while achieving desired visible transmittance. The designed multilayers exhibited visible transmittance ranging from 0.41 to 0.89 while retaining decent NIR reflectance between 0.37 and 0.52. These spectral characteristics remained consistent up to incident angles of >60°, ensuring their practical applicability for vertically oriented windows. Outdoor experiments showed substantial temperature reductions of up to 8.8 °C on floors compared to uncoated glass windows. The active learning-based multilayers exhibited superior performance compared to analytical ZnS/MgF<jats:sub>2</jats:sub> distributed Bragg reflectors with equivalent thicknesses by improving NIR reflectance and modulating visible transmittance. In addition, multilayers with a greater number of bits extensively tuned transmission color, enabling customization for aesthetic purposes. These findings suggest that all-dielectric multilayers can provide a scalable, cost-effective alternative for reducing energy consumption in buildings and vehicles with large glass surfaces, supporting efforts to mitigate climate change through enhanced energy efficiency.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"15 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0619","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global temperatures have escalated the demand for indoor cooling, thus requiring energy-saving solutions. Traditional approaches often integrate metal layers in cooling windows to block near-infrared (NIR) sunlight, which, albeit effective, lack the broad modulation of visible transmission and lead to heat accumulation due to sunlight absorption. Here, we address these limitations by developing cooling windows using ZnS/MgF2 multilayers, optimized through a binary optimization-based active learning process. We demonstrated that these multilayers, with a total thickness below 1 µm, effectively reduced indoor temperatures by blocking NIR sunlight while achieving desired visible transmittance. The designed multilayers exhibited visible transmittance ranging from 0.41 to 0.89 while retaining decent NIR reflectance between 0.37 and 0.52. These spectral characteristics remained consistent up to incident angles of >60°, ensuring their practical applicability for vertically oriented windows. Outdoor experiments showed substantial temperature reductions of up to 8.8 °C on floors compared to uncoated glass windows. The active learning-based multilayers exhibited superior performance compared to analytical ZnS/MgF2 distributed Bragg reflectors with equivalent thicknesses by improving NIR reflectance and modulating visible transmittance. In addition, multilayers with a greater number of bits extensively tuned transmission color, enabling customization for aesthetic purposes. These findings suggest that all-dielectric multilayers can provide a scalable, cost-effective alternative for reducing energy consumption in buildings and vehicles with large glass surfaces, supporting efforts to mitigate climate change through enhanced energy efficiency.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.