Frequency-comb-referenced multiwavelength interferometry for high-precision and high-speed 3D measurement in heterogeneous semiconductor packaging

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2025-02-06 DOI:10.1515/nanoph-2024-0578
Jun Hyung Park, Dae Hee Kim, Huy Hoang Chu, Ji Won Hahm, Guseon Kang, Dongil Lee, Seyong Song, Mingu Kang, Seung-Woo Kim, Young-Jin Kim
{"title":"Frequency-comb-referenced multiwavelength interferometry for high-precision and high-speed 3D measurement in heterogeneous semiconductor packaging","authors":"Jun Hyung Park, Dae Hee Kim, Huy Hoang Chu, Ji Won Hahm, Guseon Kang, Dongil Lee, Seyong Song, Mingu Kang, Seung-Woo Kim, Young-Jin Kim","doi":"10.1515/nanoph-2024-0578","DOIUrl":null,"url":null,"abstract":"As Moore’s law approaches its physical limits, the semiconductor industry has begun to focus on improving I/O density and power efficiency through 2.5D/3D packaging. Heterogeneous integration, which combines integrated circuit blocks from different linewidth processes into a single package, is central to these developments. To ensure stable connections with high yield in the back-end processes, high precision and high speed 3D surface measurement is the prerequisite. Existing methods such as white-light interferometry and confocal microscopy face challenges in balancing resolution, speed, and accuracy in 3D measurements. Here, we report a frequency-comb-referenced multiwavelength interferometry for the measurement of 3D sample profiles without 2π phase ambiguity for advanced packaging. Using four frequency-comb-referenced wavelengths with a fractional stability of 4.77 × 10<jats:sup>−12</jats:sup>, the measurement range was extended from ∼400 nm (<jats:italic>λ</jats:italic>/2) to 1 mm, with the measurement repeatability of 0.258 nm for 32 measurements. The standard step-height samples with 500-µm and 4.5-µm steps, as well as real industrial microbumps in heterogeneous integration packaging, were all successfully measured. Therein, we devised a sequential phase detection method, which enables 5,000 times faster solution determination than the traditional recursive excess fraction method, while maintaining its reliability under noisy conditions. As 2.5D/3D packaging architectures become increasingly complex, our approach will readily meet the critical industrial demands for high-precision and high-speed measurement of multiscale features in advanced semiconductor packaging.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"163 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0578","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As Moore’s law approaches its physical limits, the semiconductor industry has begun to focus on improving I/O density and power efficiency through 2.5D/3D packaging. Heterogeneous integration, which combines integrated circuit blocks from different linewidth processes into a single package, is central to these developments. To ensure stable connections with high yield in the back-end processes, high precision and high speed 3D surface measurement is the prerequisite. Existing methods such as white-light interferometry and confocal microscopy face challenges in balancing resolution, speed, and accuracy in 3D measurements. Here, we report a frequency-comb-referenced multiwavelength interferometry for the measurement of 3D sample profiles without 2π phase ambiguity for advanced packaging. Using four frequency-comb-referenced wavelengths with a fractional stability of 4.77 × 10−12, the measurement range was extended from ∼400 nm (λ/2) to 1 mm, with the measurement repeatability of 0.258 nm for 32 measurements. The standard step-height samples with 500-µm and 4.5-µm steps, as well as real industrial microbumps in heterogeneous integration packaging, were all successfully measured. Therein, we devised a sequential phase detection method, which enables 5,000 times faster solution determination than the traditional recursive excess fraction method, while maintaining its reliability under noisy conditions. As 2.5D/3D packaging architectures become increasingly complex, our approach will readily meet the critical industrial demands for high-precision and high-speed measurement of multiscale features in advanced semiconductor packaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
High-efficiency generation of bi-functional holography with metasurfaces Improving quantum metrology protocols with programmable photonic circuits Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides Tunable holographic metasurfaces for augmented and virtual reality Enhanced photoluminescence of strongly coupled single molecule-plasmonic nanocavity: analysis of spectral modifications using nonlocal response theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1