Siyang Li, Yaqin Zheng, Changda Zhou, Guoli He, Zhonghong Shi, Haoyang Li, Zhang-Kai Zhou
{"title":"Simultaneous control of three degrees of freedom in perfect vector vortex beams based on metasurfaces","authors":"Siyang Li, Yaqin Zheng, Changda Zhou, Guoli He, Zhonghong Shi, Haoyang Li, Zhang-Kai Zhou","doi":"10.1515/nanoph-2024-0709","DOIUrl":null,"url":null,"abstract":"The perfect vector vortex beams (PVVBs) have played an important role in various fields due to their advantages of unique vortex features, flexible polarization distribution and multiple degrees of freedom (DoFs). The simultaneous and precise control over multiple DoFs, such as the polarization distribution, beam shape and position which greatly influence various characteristics of PVVBs, holds paramount importance. However, it is still difficult to manipulate various DoFs in a multiplexing way and the control precision of polarization distribution only reaches the half-integer level, notably hindering the further application and development of PVVBs. Here, an approach that integrates holographic technique with geometric phase metasurfaces, experimentally demonstrates the multiplexing control of PVVBs over three DoFs, i.e., enabling the independent manipulation of non-uniform polarization distributions, beam shapes and spatial positions. Furthermore, non-integer polarization order of the generated PVVBs can be arbitrary non-integer numbers with a high resolution of 0.1, largely improving the control precision. With such multiplexing manipulation of PVVBs with high precision, we can provide abundant processing dimensions for information science and technologies, exhibiting broad application potentials in fields such as information encryption, high-speed optical communication, and precise particle manipulation.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"58 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0709","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The perfect vector vortex beams (PVVBs) have played an important role in various fields due to their advantages of unique vortex features, flexible polarization distribution and multiple degrees of freedom (DoFs). The simultaneous and precise control over multiple DoFs, such as the polarization distribution, beam shape and position which greatly influence various characteristics of PVVBs, holds paramount importance. However, it is still difficult to manipulate various DoFs in a multiplexing way and the control precision of polarization distribution only reaches the half-integer level, notably hindering the further application and development of PVVBs. Here, an approach that integrates holographic technique with geometric phase metasurfaces, experimentally demonstrates the multiplexing control of PVVBs over three DoFs, i.e., enabling the independent manipulation of non-uniform polarization distributions, beam shapes and spatial positions. Furthermore, non-integer polarization order of the generated PVVBs can be arbitrary non-integer numbers with a high resolution of 0.1, largely improving the control precision. With such multiplexing manipulation of PVVBs with high precision, we can provide abundant processing dimensions for information science and technologies, exhibiting broad application potentials in fields such as information encryption, high-speed optical communication, and precise particle manipulation.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.