Casein Glycomacropeptide Regulates Gene Expression in Intestinal Epithelial Cells: Effect of Simulated Gastrointestinal Digestion and Peptide Microencapsulation

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2025-02-08 DOI:10.1021/acs.jafc.4c10146
Raúl E. Cian, Mireia Tena-Garitaonaindia, Fermín Sánchez de Medina, Olga Martínez-Augustin
{"title":"Casein Glycomacropeptide Regulates Gene Expression in Intestinal Epithelial Cells: Effect of Simulated Gastrointestinal Digestion and Peptide Microencapsulation","authors":"Raúl E. Cian, Mireia Tena-Garitaonaindia, Fermín Sánchez de Medina, Olga Martínez-Augustin","doi":"10.1021/acs.jafc.4c10146","DOIUrl":null,"url":null,"abstract":"κ-Casein glycomacropeptide (GMP) exerts anti-inflammatory and immune modulatory effects. A bovine GMP concentrate and its <i>in vitro</i> digestion product were obtained. GMP was also microencapsulated with phycocolloids and further digested. These products were tested in three-dimensional (3D) and open monolayer two-dimensional (2D) mouse jejunal organoids. Almost no effect was observed on the 2D organoids. In 3D organoids, GMP induced intestinal proliferation (<i>Axin</i>2, <i>Pcna</i>) and differentiation (<i>Vil1, Alpl</i>) genes together with <i>Muc</i>3, antibacterial genes (<i>Lyz1, Pla2g2a</i>), and <i>Cxcl1</i>. GMP also induced interferon I defense genes (<i>Ifnb1, Ifr3, Oas2, Oas3, Rnasel</i>) under basal conditions and in TNF-stimulated organoids. <i>In vitro</i> digestion abrogated the effects of GMP and induced new genes (<i>Lgr5, Olfm4</i>, and <i>Lct</i>). In TNF-stimulated organoids, digested GMP repressed multiple genes. Encapsulation largely preserved the GMP effects. In conclusion, GMP showed differential effects in 3D and 2D organoids. The effects of digestion peptides were also different, suggesting distinct potential as functional foods.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"23 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10146","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

κ-Casein glycomacropeptide (GMP) exerts anti-inflammatory and immune modulatory effects. A bovine GMP concentrate and its in vitro digestion product were obtained. GMP was also microencapsulated with phycocolloids and further digested. These products were tested in three-dimensional (3D) and open monolayer two-dimensional (2D) mouse jejunal organoids. Almost no effect was observed on the 2D organoids. In 3D organoids, GMP induced intestinal proliferation (Axin2, Pcna) and differentiation (Vil1, Alpl) genes together with Muc3, antibacterial genes (Lyz1, Pla2g2a), and Cxcl1. GMP also induced interferon I defense genes (Ifnb1, Ifr3, Oas2, Oas3, Rnasel) under basal conditions and in TNF-stimulated organoids. In vitro digestion abrogated the effects of GMP and induced new genes (Lgr5, Olfm4, and Lct). In TNF-stimulated organoids, digested GMP repressed multiple genes. Encapsulation largely preserved the GMP effects. In conclusion, GMP showed differential effects in 3D and 2D organoids. The effects of digestion peptides were also different, suggesting distinct potential as functional foods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
Casein Glycomacropeptide Regulates Gene Expression in Intestinal Epithelial Cells: Effect of Simulated Gastrointestinal Digestion and Peptide Microencapsulation Multi-Omics Reveal the Effects and Regulatory Mechanism of Dietary Magnolol Supplementation on Production Performance of Post-Peak Laying Hens Protein Precoating with Concentration-Dependent Manner Breaks through the Biomacromolecular Barrier of Transferrin-Functionalized Nanoparticle in Intestinal Mucosa Structural Characterization of APSN from Astragalus membranaceus and Its Potential Therapeutic Effect on Immune Dysregulation and Tissue Damage Phosphorus Release from Nano-Hydroxyapatite Derived from Biowastes in the Presence of Phosphate-Solubilizing Bacteria: A Soil Column Experiment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1