A generative whole-brain segmentation model for positron emission tomography images.

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Physics Pub Date : 2025-02-08 DOI:10.1186/s40658-025-00716-9
Wenbo Li, Zhenxing Huang, Hongyan Tang, Yaping Wu, Yunlong Gao, Jing Qin, Jianmin Yuan, Yang Yang, Yan Zhang, Na Zhang, Hairong Zheng, Dong Liang, Meiyun Wang, Zhanli Hu
{"title":"A generative whole-brain segmentation model for positron emission tomography images.","authors":"Wenbo Li, Zhenxing Huang, Hongyan Tang, Yaping Wu, Yunlong Gao, Jing Qin, Jianmin Yuan, Yang Yang, Yan Zhang, Na Zhang, Hairong Zheng, Dong Liang, Meiyun Wang, Zhanli Hu","doi":"10.1186/s40658-025-00716-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Whole-brain segmentation via positron emission tomography (PET) imaging is crucial for advancing neuroscience research and clinical medicine, providing essential insights into biological metabolism and activity within different brain regions. However, the low resolution of PET images may have limited the segmentation accuracy of multiple brain structures. Therefore, we propose a generative multi-object segmentation model for brain PET images to achieve automatic and accurate segmentation.</p><p><strong>Methods: </strong>In this study, we propose a generative multi-object segmentation model for brain PET images with two learning protocols. First, we pretrained a latent mapping model to learn the mapping relationship between PET and MR images so that we could extract anatomical information of the brain. A 3D multi-object segmentation model was subsequently proposed to apply whole-brain segmentation to MR images generated from integrated latent mapping models. Moreover, a custom cross-attention module based on a cross-attention mechanism was constructed to effectively fuse the functional information and structural information. The proposed method was compared with various deep learning-based approaches in terms of the Dice similarity coefficient, Jaccard index, precision, and recall serving as evaluation metrics.</p><p><strong>Results: </strong>Experiments were conducted on real brain PET/MR images from 120 patients. Both visual and quantitative results indicate that our method outperforms the other comparison approaches, achieving 75.53% ± 4.26% Dice, 66.02% ± 4.55% Jaccard, 74.64% ± 4.15% recall and 81.40% ± 2.30% precision. Furthermore, the evaluation of the SUV distribution and correlation assessment in the regions of interest demonstrated consistency with the ground truth. Additionally, clinical tolerance rates, which are determined by the tumor background ratio, have confirmed the ability of the method to distinguish highly metabolic regions accurately from normal regions, reinforcing its clinical applicability.</p><p><strong>Conclusion: </strong>For automatic and accurate whole-brain segmentation, we propose a novel 3D generative multi-object segmentation model for brain PET images, which achieves superior model performance compared with other deep learning methods. In the future, we will apply our whole-brain segmentation method to clinical practice and extend it to other multimodal tasks.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"12 1","pages":"15"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-025-00716-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Whole-brain segmentation via positron emission tomography (PET) imaging is crucial for advancing neuroscience research and clinical medicine, providing essential insights into biological metabolism and activity within different brain regions. However, the low resolution of PET images may have limited the segmentation accuracy of multiple brain structures. Therefore, we propose a generative multi-object segmentation model for brain PET images to achieve automatic and accurate segmentation.

Methods: In this study, we propose a generative multi-object segmentation model for brain PET images with two learning protocols. First, we pretrained a latent mapping model to learn the mapping relationship between PET and MR images so that we could extract anatomical information of the brain. A 3D multi-object segmentation model was subsequently proposed to apply whole-brain segmentation to MR images generated from integrated latent mapping models. Moreover, a custom cross-attention module based on a cross-attention mechanism was constructed to effectively fuse the functional information and structural information. The proposed method was compared with various deep learning-based approaches in terms of the Dice similarity coefficient, Jaccard index, precision, and recall serving as evaluation metrics.

Results: Experiments were conducted on real brain PET/MR images from 120 patients. Both visual and quantitative results indicate that our method outperforms the other comparison approaches, achieving 75.53% ± 4.26% Dice, 66.02% ± 4.55% Jaccard, 74.64% ± 4.15% recall and 81.40% ± 2.30% precision. Furthermore, the evaluation of the SUV distribution and correlation assessment in the regions of interest demonstrated consistency with the ground truth. Additionally, clinical tolerance rates, which are determined by the tumor background ratio, have confirmed the ability of the method to distinguish highly metabolic regions accurately from normal regions, reinforcing its clinical applicability.

Conclusion: For automatic and accurate whole-brain segmentation, we propose a novel 3D generative multi-object segmentation model for brain PET images, which achieves superior model performance compared with other deep learning methods. In the future, we will apply our whole-brain segmentation method to clinical practice and extend it to other multimodal tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
期刊最新文献
ASICs in PET: what we have and what we need. A generative whole-brain segmentation model for positron emission tomography images. On the reduction of imaging time-points for dosimetry in radionuclide therapy. Discordance between 90Y-PET/CT(MR)-estimated activity and dose calibrator measured administered activity: an international study in SIRT patients treated with resin and glass microspheres. Low-activity [18F]-somatostatin receptor (SSTR) imaging using [18F]SiTATE on a long axial field-of-view PET/CT scanner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1