Electrochemically modulated single-molecule localization microscopy for in vitro imaging cytoskeletal protein structures

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2025-02-08 DOI:10.1515/nanoph-2024-0559
Chenghong Lei, Dehong Hu
{"title":"Electrochemically modulated single-molecule localization microscopy for in vitro imaging cytoskeletal protein structures","authors":"Chenghong Lei, Dehong Hu","doi":"10.1515/nanoph-2024-0559","DOIUrl":null,"url":null,"abstract":"A new concept of electrochemically modulated single-molecule localization super-resolution imaging is developed. Applications of single-molecule localization super-resolution microscopy have been limited due to insufficient availability of qualified fluorophores with favorable low duty cycles. The key for the new concept is that the “On” state of a redox-active fluorophore with unfavorable high duty cycle could be driven to “Off” state by electrochemical potential modulation and thus become available for single-molecule localization imaging. The new concept was carried out using redox-active cresyl violet with unfavorable high duty cycle as a model fluorophore by synchronizing electrochemical potential scanning with a single-molecule localization microscope. The two cytoskeletal protein structures, the microtubules from porcine brain and the actins from rabbit muscle, were selected as the model target structures for the conceptual imaging <jats:italic>in vitro</jats:italic>. The super-resolution images of microtubules and actins were obtained from precise single-molecule localizations determined by modulating the On/Off states of single fluorophore molecules on the cytoskeletal proteins via electrochemical potential scanning. Importantly, this method could allow more fluorophores even with unfavorable photophysical properties to become available for a wider and more extensive application of single-molecule localization microscopy.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"29 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0559","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A new concept of electrochemically modulated single-molecule localization super-resolution imaging is developed. Applications of single-molecule localization super-resolution microscopy have been limited due to insufficient availability of qualified fluorophores with favorable low duty cycles. The key for the new concept is that the “On” state of a redox-active fluorophore with unfavorable high duty cycle could be driven to “Off” state by electrochemical potential modulation and thus become available for single-molecule localization imaging. The new concept was carried out using redox-active cresyl violet with unfavorable high duty cycle as a model fluorophore by synchronizing electrochemical potential scanning with a single-molecule localization microscope. The two cytoskeletal protein structures, the microtubules from porcine brain and the actins from rabbit muscle, were selected as the model target structures for the conceptual imaging in vitro. The super-resolution images of microtubules and actins were obtained from precise single-molecule localizations determined by modulating the On/Off states of single fluorophore molecules on the cytoskeletal proteins via electrochemical potential scanning. Importantly, this method could allow more fluorophores even with unfavorable photophysical properties to become available for a wider and more extensive application of single-molecule localization microscopy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
High-efficiency generation of bi-functional holography with metasurfaces Improving quantum metrology protocols with programmable photonic circuits Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides Tunable holographic metasurfaces for augmented and virtual reality Enhanced photoluminescence of strongly coupled single molecule-plasmonic nanocavity: analysis of spectral modifications using nonlocal response theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1