{"title":"Stride potential of CZGS/CZGSe quantum dot solar cell influence of nano-structured all-around-barriers","authors":"Smruti Ranjan Mohanty , Chandrasekar Palanisamy , Sudarsan Sahoo , Soumyaranjan Routray","doi":"10.1016/j.micrna.2025.208083","DOIUrl":null,"url":null,"abstract":"<div><div>The Use of Quantum Dots (QDs) in solar cells are emerging because of their eco-friendly, cheaper and better electrical and optical characteristics. Kesterite based Quantum dot solar cells(QDSC) face critical challenges towards the width and thickness of QDs layer to enhance photo absorption and overall efficiency. An efficient engineering of all around barrier QD solar cell (AABQD) utilizing Nano structures may improve the overall performance in QDSC. The goal is to explore the performance of QDSC by varying QD layer (CZGS/CZGSe) thickness from 5 nm to 15 nm and width of the QDs (CZGSe) varies from 50 nm to 150 nm. A thin barrier layer (CZGS) of 5 nm is inserted between each QD layers that coupled with electrical and optical performance. The behavior of carrier quantization changes when QDs are surrounded by barriers from all sides. The confinement and escape of the carrier are more pronounced compared to normal QD structure. The remarkable efficiency of 18.45% and Voc of 1.103v are obtained in AAQBD Solar cell as compared to efficiency 15.3% and Voc of 1.075V in traditional QDs Solar cell.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"200 ","pages":"Article 208083"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The Use of Quantum Dots (QDs) in solar cells are emerging because of their eco-friendly, cheaper and better electrical and optical characteristics. Kesterite based Quantum dot solar cells(QDSC) face critical challenges towards the width and thickness of QDs layer to enhance photo absorption and overall efficiency. An efficient engineering of all around barrier QD solar cell (AABQD) utilizing Nano structures may improve the overall performance in QDSC. The goal is to explore the performance of QDSC by varying QD layer (CZGS/CZGSe) thickness from 5 nm to 15 nm and width of the QDs (CZGSe) varies from 50 nm to 150 nm. A thin barrier layer (CZGS) of 5 nm is inserted between each QD layers that coupled with electrical and optical performance. The behavior of carrier quantization changes when QDs are surrounded by barriers from all sides. The confinement and escape of the carrier are more pronounced compared to normal QD structure. The remarkable efficiency of 18.45% and Voc of 1.103v are obtained in AAQBD Solar cell as compared to efficiency 15.3% and Voc of 1.075V in traditional QDs Solar cell.