{"title":"Complement-activated fragment Ba functions as an antibacterial protein and mediates immune responses in lower vertebrates.","authors":"Xiao-Yan Jin, Hong-Qiang Zhang, Zhe Feng, Heng Liu, Xuan-Yue Wang, Hao-Bin Luo, Xue-Peng Li, Yuan-Yuan Sun, Mo-Fei Li","doi":"10.1016/j.jbc.2025.108278","DOIUrl":null,"url":null,"abstract":"<p><p>The complement system plays an important role in antibacterial infection and immune regulation. Ba, an important complement component, is produced and released by the cleavage of complement factor B (CFB) during complement activation. However, the immune functions of Ba are unclear. In this study, we reported that recombinant Ba exerted direct bactericidal and immune regulatory effects. Recombinant Paralichthys olivaceus Ba (rPoBa) bound bacteria via interaction with the bacterial wall component lipopolysaccharide (LPS), resulting in bacterial membrane permeabilization and bacterial death. Furthermore, rPoBa exhibited bactericidal activity against Gram-negative bacteria in a manner that depended on concentration, time, temperature, pH, and metal ions. Structure prediction analysis showed that PoBa contained three distinct CCP domains. CCP1 was mainly responsible for binding to LPS, and both CCP1 and CCP3 might be required for bacterial membranous permeabilization. The bactericidal effects of Ba were observed only in lower vertebrates, with no such effects observed in mammals. In addition, rPoBa could protect P. olivaceus against Vibrio harveyi infection both in vitro and in vivo by significantly improving the immune activity of peripheral blood leukocytes and reducing tissue bacterial loads. Consistently, when PoCFB expression in P. olivaceus was knocked down, the PoBa production and complement activity were decreased, and bacterial replication was significantly enhanced. In conclusion, this study revealed that the complement-activated recombinant Ba fragment improved the immune defense against bacterial infection and provided a potential strategy to control disease in lower vertebrates.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108278"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108278","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The complement system plays an important role in antibacterial infection and immune regulation. Ba, an important complement component, is produced and released by the cleavage of complement factor B (CFB) during complement activation. However, the immune functions of Ba are unclear. In this study, we reported that recombinant Ba exerted direct bactericidal and immune regulatory effects. Recombinant Paralichthys olivaceus Ba (rPoBa) bound bacteria via interaction with the bacterial wall component lipopolysaccharide (LPS), resulting in bacterial membrane permeabilization and bacterial death. Furthermore, rPoBa exhibited bactericidal activity against Gram-negative bacteria in a manner that depended on concentration, time, temperature, pH, and metal ions. Structure prediction analysis showed that PoBa contained three distinct CCP domains. CCP1 was mainly responsible for binding to LPS, and both CCP1 and CCP3 might be required for bacterial membranous permeabilization. The bactericidal effects of Ba were observed only in lower vertebrates, with no such effects observed in mammals. In addition, rPoBa could protect P. olivaceus against Vibrio harveyi infection both in vitro and in vivo by significantly improving the immune activity of peripheral blood leukocytes and reducing tissue bacterial loads. Consistently, when PoCFB expression in P. olivaceus was knocked down, the PoBa production and complement activity were decreased, and bacterial replication was significantly enhanced. In conclusion, this study revealed that the complement-activated recombinant Ba fragment improved the immune defense against bacterial infection and provided a potential strategy to control disease in lower vertebrates.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.