Juan Zurita, Andrés Agustí Casado, Charles E. Creffield, Gloria Platero
{"title":"Multipartite entanglement distribution in a topological photonic network","authors":"Juan Zurita, Andrés Agustí Casado, Charles E. Creffield, Gloria Platero","doi":"10.22331/q-2025-02-10-1625","DOIUrl":null,"url":null,"abstract":"In the ongoing effort towards a scalable quantum computer, multiple technologies have been proposed. Some of them exploit topological materials to process quantum information. In this work, we propose a lattice of photonic cavities with alternating hoppings to create a modified multidomain SSH chain, that is, a sequence of topological insulators made from chains of dimers. A qubit is then coupled to each boundary. We show this system is well suited for quantum information processing because topological transfer of photons through this one-dimensional lattice can entangle any set of qubits on demand, providing a scalable quantum platform. We verify this claim evaluating entanglement measures and witnesses proving that bipartite and multipartite entanglement is produced, even in the presence of some disorder.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"55 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-10-1625","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the ongoing effort towards a scalable quantum computer, multiple technologies have been proposed. Some of them exploit topological materials to process quantum information. In this work, we propose a lattice of photonic cavities with alternating hoppings to create a modified multidomain SSH chain, that is, a sequence of topological insulators made from chains of dimers. A qubit is then coupled to each boundary. We show this system is well suited for quantum information processing because topological transfer of photons through this one-dimensional lattice can entangle any set of qubits on demand, providing a scalable quantum platform. We verify this claim evaluating entanglement measures and witnesses proving that bipartite and multipartite entanglement is produced, even in the presence of some disorder.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.