Multipartite entanglement distribution in a topological photonic network

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2025-02-10 DOI:10.22331/q-2025-02-10-1625
Juan Zurita, Andrés Agustí Casado, Charles E. Creffield, Gloria Platero
{"title":"Multipartite entanglement distribution in a topological photonic network","authors":"Juan Zurita, Andrés Agustí Casado, Charles E. Creffield, Gloria Platero","doi":"10.22331/q-2025-02-10-1625","DOIUrl":null,"url":null,"abstract":"In the ongoing effort towards a scalable quantum computer, multiple technologies have been proposed. Some of them exploit topological materials to process quantum information. In this work, we propose a lattice of photonic cavities with alternating hoppings to create a modified multidomain SSH chain, that is, a sequence of topological insulators made from chains of dimers. A qubit is then coupled to each boundary. We show this system is well suited for quantum information processing because topological transfer of photons through this one-dimensional lattice can entangle any set of qubits on demand, providing a scalable quantum platform. We verify this claim evaluating entanglement measures and witnesses proving that bipartite and multipartite entanglement is produced, even in the presence of some disorder.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"55 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-02-10-1625","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the ongoing effort towards a scalable quantum computer, multiple technologies have been proposed. Some of them exploit topological materials to process quantum information. In this work, we propose a lattice of photonic cavities with alternating hoppings to create a modified multidomain SSH chain, that is, a sequence of topological insulators made from chains of dimers. A qubit is then coupled to each boundary. We show this system is well suited for quantum information processing because topological transfer of photons through this one-dimensional lattice can entangle any set of qubits on demand, providing a scalable quantum platform. We verify this claim evaluating entanglement measures and witnesses proving that bipartite and multipartite entanglement is produced, even in the presence of some disorder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Cutting circuits with multiple two-qubit unitaries Minimising surface-code failures using a color-code decoder Light-matter correlations in Quantum Floquet engineering of cavity quantum materials A de Finetti theorem for quantum causal structures Refining resource estimation for the quantum computation of vibrational molecular spectra through Trotter error analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1