An in-depth analysis of Pebax-1657/GO-silica/PEI thin film nano-composite membranes for gas dehydration

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2025-02-06 DOI:10.1016/j.cep.2025.110206
A.R. Valagohar, S.A. Hashemifard, A. Khosravi
{"title":"An in-depth analysis of Pebax-1657/GO-silica/PEI thin film nano-composite membranes for gas dehydration","authors":"A.R. Valagohar,&nbsp;S.A. Hashemifard,&nbsp;A. Khosravi","doi":"10.1016/j.cep.2025.110206","DOIUrl":null,"url":null,"abstract":"<div><div>This research aimed to study the effectiveness of blending Pebax-1657 polymer with GO/SiO<sub>2</sub> nanoparticles in developing TFN membranes for N<sub>2</sub> gas dehydration. Different concentrations of nanoparticles (0 %, 0.5 %, and 1 %) were incorporated using dip coating. The nanocomposites were analyzed for their chemical structure, morphology, topology, and thermal stability using FTIR, SEM, CA, AFM, and TGA. The results showed that the samples had good thermal stability and a highly hydrophilic surface. The MP0.5–0.5 membrane with 0.5 % GO/SiO<sub>2</sub> nanoparticles demonstrated improved performance in water vapor and N<sub>2</sub> permeance at 2 × 10<sup>5</sup> to 6 × 10<sup>5</sup> Pa pressure and 70 % relative humidity. The addition of 0.5 % GO nanoparticles to the sample further enhanced H<sub>2</sub>O and N<sub>2</sub> permeance and separation factor. However, in the case of the MP0.5–0.5 membrane, a different scenario unfolds, showcasing a synergistic effect and the ideal morphology was observed. The water vapor and nitrogen permeance of the MP0.5–0.5 membrane, under 2 × 10<sup>5</sup> to 6 × 10<sup>5</sup> Pa pressure and 70 % humidity, reaches from GPU 158 and GPU 0.23 (for the neat mebrane) to GPU 969 and GPU 31, respectively. The H<sub>2</sub>O/N<sub>2</sub> separation factor was recorded as 679.It was observed that the relative humidity of the gas decreased from approximately 70 % to about 1.2 % during the membrane step, indicating the high efficiency of the membrane. The investigation concluded that the TFN membranes' dehydration characteristics are influenced by various factors, including morphology, plasticization, and hydrophilic properties. Changes in the feed gas flow rate also affected separation factor and nitrogen permeance. The rise in sweep gas flow had a notable impact on enhancing the membrane's separation factor by decreasing the transmembrane concentration gradient. Consequently, a trade-off emerges between water vapor flux and separation factor when employing the sweep gas stream. These discoveries are highly valuable in industrial settings, as they offer a more profound understanding of the topic.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110206"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000558","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to study the effectiveness of blending Pebax-1657 polymer with GO/SiO2 nanoparticles in developing TFN membranes for N2 gas dehydration. Different concentrations of nanoparticles (0 %, 0.5 %, and 1 %) were incorporated using dip coating. The nanocomposites were analyzed for their chemical structure, morphology, topology, and thermal stability using FTIR, SEM, CA, AFM, and TGA. The results showed that the samples had good thermal stability and a highly hydrophilic surface. The MP0.5–0.5 membrane with 0.5 % GO/SiO2 nanoparticles demonstrated improved performance in water vapor and N2 permeance at 2 × 105 to 6 × 105 Pa pressure and 70 % relative humidity. The addition of 0.5 % GO nanoparticles to the sample further enhanced H2O and N2 permeance and separation factor. However, in the case of the MP0.5–0.5 membrane, a different scenario unfolds, showcasing a synergistic effect and the ideal morphology was observed. The water vapor and nitrogen permeance of the MP0.5–0.5 membrane, under 2 × 105 to 6 × 105 Pa pressure and 70 % humidity, reaches from GPU 158 and GPU 0.23 (for the neat mebrane) to GPU 969 and GPU 31, respectively. The H2O/N2 separation factor was recorded as 679.It was observed that the relative humidity of the gas decreased from approximately 70 % to about 1.2 % during the membrane step, indicating the high efficiency of the membrane. The investigation concluded that the TFN membranes' dehydration characteristics are influenced by various factors, including morphology, plasticization, and hydrophilic properties. Changes in the feed gas flow rate also affected separation factor and nitrogen permeance. The rise in sweep gas flow had a notable impact on enhancing the membrane's separation factor by decreasing the transmembrane concentration gradient. Consequently, a trade-off emerges between water vapor flux and separation factor when employing the sweep gas stream. These discoveries are highly valuable in industrial settings, as they offer a more profound understanding of the topic.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Intensification and enhancement of phenolic compounds extraction using cooperative formulation Editorial Board Enhanced chloroquine adsorption using cobalt-modified mesoporous silicas for water treatment Comprehensive performance investigation of the novel mixed flow field for proton exchange membrane fuel cells: Three-dimensional multiphase simulation of a full-scale cell Development of 3D-printed electrodes using polyacrylonitrile/ graphene composites for application in polysulfide bromide flow battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1