Şeyma Nur Süerkan , Nuray Arslan , Argun Talat Gökçeören , Soner Çakar , Altuğ Mert Sevim , Ahmet Gül , Mahmut Özacar
{"title":"A3B type Zn(II) phthalocyanines and porphyrin cocktail dye sensitizers for highly efficient DSSCs","authors":"Şeyma Nur Süerkan , Nuray Arslan , Argun Talat Gökçeören , Soner Çakar , Altuğ Mert Sevim , Ahmet Gül , Mahmut Özacar","doi":"10.1016/j.jphotochem.2025.116333","DOIUrl":null,"url":null,"abstract":"<div><div>Dye-sensitized solar cell (DSSC) technology has recently seen some drastic advancement by new concepts and tailor-made new materials. Phthalocyanines and porphyrins were the most investigated solar sensitive dyes. It has been determined that push–pull phthalocyanines containing carboxylic acid groups are among the promising photosensitizers for dye sensitized solar cells (DSSCs) with their absorption spectra in the NIR region. In particular, carboxylic acid-substituted non-symmetrical metallophthalocyanines appear to be extremely important for electron injection into the TiO<sub>2</sub> conduction band in applications where DSSCs have significant potential to achieve greater efficiency. Zinc phthalocyanines containing these groups appear to be candidate molecules for DSSC. However, there is no apparent research in the literature regarding the syntheses and recommendations on analogues of zinc phthalocyanines containing three t-butylsulfanyl or ferrocenylphenol groups and mono aliphatic or aromatic alkynyl anchoring carboxylic acid groups as sensitizing agents for dye-sensitized solar cells. In this actual paper, zinc phthalocyanines and YD2 porphyrin macrocycles were combined as dye cocktails, to extend and complement the absorbance window of sensitizer dyes in the visible region. Thus, four novel A<sub>3</sub>B type non-symmetrical zinc phthalocyanines have been synthesized and characterized via spectroscopic (<sup>1</sup>H NMR, FTIR, UV–Vis, MALDI-TOF, etc.), electrochemical (CV, SWV), and molecular (TD-DFT) analysis methods. The reported novel solar sensitive dye-coated cells have been characterized in detail by electrochemical methods i.e., J-V, IPCE and measurements of stability. YD2:ZnPc3 (3:1) cocktail dye yielded the highest conversion efficiency, accomplishing 10.87 % exceeding the respective individual dye counterparts, but also the well-known Ru-based commercial N719 sensitizer’s (8.90 %) solar cell efficiencies.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"464 ","pages":"Article 116333"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025000735","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dye-sensitized solar cell (DSSC) technology has recently seen some drastic advancement by new concepts and tailor-made new materials. Phthalocyanines and porphyrins were the most investigated solar sensitive dyes. It has been determined that push–pull phthalocyanines containing carboxylic acid groups are among the promising photosensitizers for dye sensitized solar cells (DSSCs) with their absorption spectra in the NIR region. In particular, carboxylic acid-substituted non-symmetrical metallophthalocyanines appear to be extremely important for electron injection into the TiO2 conduction band in applications where DSSCs have significant potential to achieve greater efficiency. Zinc phthalocyanines containing these groups appear to be candidate molecules for DSSC. However, there is no apparent research in the literature regarding the syntheses and recommendations on analogues of zinc phthalocyanines containing three t-butylsulfanyl or ferrocenylphenol groups and mono aliphatic or aromatic alkynyl anchoring carboxylic acid groups as sensitizing agents for dye-sensitized solar cells. In this actual paper, zinc phthalocyanines and YD2 porphyrin macrocycles were combined as dye cocktails, to extend and complement the absorbance window of sensitizer dyes in the visible region. Thus, four novel A3B type non-symmetrical zinc phthalocyanines have been synthesized and characterized via spectroscopic (1H NMR, FTIR, UV–Vis, MALDI-TOF, etc.), electrochemical (CV, SWV), and molecular (TD-DFT) analysis methods. The reported novel solar sensitive dye-coated cells have been characterized in detail by electrochemical methods i.e., J-V, IPCE and measurements of stability. YD2:ZnPc3 (3:1) cocktail dye yielded the highest conversion efficiency, accomplishing 10.87 % exceeding the respective individual dye counterparts, but also the well-known Ru-based commercial N719 sensitizer’s (8.90 %) solar cell efficiencies.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.