Multi-array wax paper-based platform for the colorimetric determination of metal ions in human biofluids: Smart wearable optical sensor (SWOS) towards bioanalysis

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2025-02-08 DOI:10.1016/j.jphotochem.2025.116335
Farnaz Bahavarnia , Mohammad Hasanzadeh
{"title":"Multi-array wax paper-based platform for the colorimetric determination of metal ions in human biofluids: Smart wearable optical sensor (SWOS) towards bioanalysis","authors":"Farnaz Bahavarnia ,&nbsp;Mohammad Hasanzadeh","doi":"10.1016/j.jphotochem.2025.116335","DOIUrl":null,"url":null,"abstract":"<div><div>Metal ions are needed to keep the human body healthy, as their presence has or can affect vital biological functions in humans and their existence is essential for survival. Current methods for metal ion analysis struggle with challenges such as low sensitivity, lack of selectivity and complex procedures. Therefore, clinicians urgently need an efficient analysis method/technique. In the present study, a new chemosensing method was proposed for the sensitive recognition of Co(II), Cu (II), and Pb (II) ions. In this method, a chemical reaction occurs between metal ions and triangular silver nanoparticles (TA-AgNPs) which served as optical prob, resulting in a color change detected by an engineered colorimetric method. UV–visible spectrophotometry also confirms the reaction, as the interaction between metal ions and TA-AgNPs causes a significant change in the absorption spectrum. This enables the rapid and reliable measurement of these important metal ions with a detection limit of less than 10 nM to 300 mM in human body fluids. Finally, Co(II), Cu (II), and Pb (II) cations were determined by a novel microfluidic chemosensor which engineered by multi-array wax paper-based method. Therefore, a novel portable photo-sensor was developed for the sensitive and specific monitoring of Co(II), Cu (II), and Pb (II) cations in human real samples. In the presence of metal ions, constructed microfluidic paper-based colorimetric devices (<em>μ</em>PCDs) work based on color alternation of the sensing probe, such that the blue color of the TA-AgNPrs solution was changed to light orange in the presence of Co(II), and Cu(II) was changed to yellow, Pb(II) was changed to light blue which confirmed suitable application of the engineered platform for the rapid identification of ions. Therefore, an innovative method was suggested for the <em>in-situ</em> and <em>on-demand</em> opto-analysis of metal ions in human urine samples which is expected to help improve environmental health and safety in the workplace.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"464 ","pages":"Article 116335"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025000759","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal ions are needed to keep the human body healthy, as their presence has or can affect vital biological functions in humans and their existence is essential for survival. Current methods for metal ion analysis struggle with challenges such as low sensitivity, lack of selectivity and complex procedures. Therefore, clinicians urgently need an efficient analysis method/technique. In the present study, a new chemosensing method was proposed for the sensitive recognition of Co(II), Cu (II), and Pb (II) ions. In this method, a chemical reaction occurs between metal ions and triangular silver nanoparticles (TA-AgNPs) which served as optical prob, resulting in a color change detected by an engineered colorimetric method. UV–visible spectrophotometry also confirms the reaction, as the interaction between metal ions and TA-AgNPs causes a significant change in the absorption spectrum. This enables the rapid and reliable measurement of these important metal ions with a detection limit of less than 10 nM to 300 mM in human body fluids. Finally, Co(II), Cu (II), and Pb (II) cations were determined by a novel microfluidic chemosensor which engineered by multi-array wax paper-based method. Therefore, a novel portable photo-sensor was developed for the sensitive and specific monitoring of Co(II), Cu (II), and Pb (II) cations in human real samples. In the presence of metal ions, constructed microfluidic paper-based colorimetric devices (μPCDs) work based on color alternation of the sensing probe, such that the blue color of the TA-AgNPrs solution was changed to light orange in the presence of Co(II), and Cu(II) was changed to yellow, Pb(II) was changed to light blue which confirmed suitable application of the engineered platform for the rapid identification of ions. Therefore, an innovative method was suggested for the in-situ and on-demand opto-analysis of metal ions in human urine samples which is expected to help improve environmental health and safety in the workplace.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
A3B type Zn(II) phthalocyanines and porphyrin cocktail dye sensitizers for highly efficient DSSCs Temperature control of the two-photon brightness and excited state properties of diimide dibenzene sulfonic-acid perylene monomers/aggregates in a binary water-dimethyl sulfoxide solvent mixture Editorial Board Multi-array wax paper-based platform for the colorimetric determination of metal ions in human biofluids: Smart wearable optical sensor (SWOS) towards bioanalysis 8-Hydroxyquinoline based novel fluorogenic sensor for Sensitive and selective Cd2+ detection and its Applications: Soil, Foodstuffs, smartphone and living cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1