Additive manufacturing in space research: hybrid mass analyser for laser ablation ionisation mass spectrometry.

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Journal of Analytical Atomic Spectrometry Pub Date : 2025-02-05 DOI:10.1039/d4ja00392f
Andreas Riedo, Peter Keresztes Schmidt, Nikita J Boeren, Salome Gruchola, Luca N Knecht, Marek Tulej, Peter Wurz
{"title":"Additive manufacturing in space research: hybrid mass analyser for laser ablation ionisation mass spectrometry.","authors":"Andreas Riedo, Peter Keresztes Schmidt, Nikita J Boeren, Salome Gruchola, Luca N Knecht, Marek Tulej, Peter Wurz","doi":"10.1039/d4ja00392f","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing has found its way into many industrial and academic areas. In this contribution, we present an additively manufactured reflectron, integrated in a space-prototype mass analyser used in laser ablation ionisation mass spectrometry. Fused deposition modelling technology was applied to produce the reflectron's ion optical system. For the insulating parts, polylactic acid filament was used as printing material, while the conductive ion optical parts were printed using polylactic acid impregnated with carbon. Measurements were conducted on a stainless steel sample (AISI 316 L, 1.4435) and NIST SRM 661 sample to validate the performance of the reflectron. We found that this system performed nominally in terms of mass resolution and detection sensitivity. This demonstrates the suitability of 3D printing for rapid prototyping in laboratory environments. The latter is of considerable importance for future space exploration missions, as the methodology allows testing of new designs time efficiently and at reduced costs.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ja00392f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing has found its way into many industrial and academic areas. In this contribution, we present an additively manufactured reflectron, integrated in a space-prototype mass analyser used in laser ablation ionisation mass spectrometry. Fused deposition modelling technology was applied to produce the reflectron's ion optical system. For the insulating parts, polylactic acid filament was used as printing material, while the conductive ion optical parts were printed using polylactic acid impregnated with carbon. Measurements were conducted on a stainless steel sample (AISI 316 L, 1.4435) and NIST SRM 661 sample to validate the performance of the reflectron. We found that this system performed nominally in terms of mass resolution and detection sensitivity. This demonstrates the suitability of 3D printing for rapid prototyping in laboratory environments. The latter is of considerable importance for future space exploration missions, as the methodology allows testing of new designs time efficiently and at reduced costs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
期刊最新文献
Back cover Additive manufacturing in space research: hybrid mass analyser for laser ablation ionisation mass spectrometry. Challenges in measuring nanoparticles and microparticles by single particle ICP-QMS and ICP-TOFMS: size-dependent transport efficiency and limited linear dynamic range. Novel calibration approach for particle size analysis of microplastics by laser ablation single particle-ICP-MS. An emergency radiobioassay method for Pu, Am and Cm isotopes in urine samples using tandem quadrupole ICP-MS†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1