Andreas Riedo, Peter Keresztes Schmidt, Nikita J Boeren, Salome Gruchola, Luca N Knecht, Marek Tulej, Peter Wurz
{"title":"Additive manufacturing in space research: hybrid mass analyser for laser ablation ionisation mass spectrometry.","authors":"Andreas Riedo, Peter Keresztes Schmidt, Nikita J Boeren, Salome Gruchola, Luca N Knecht, Marek Tulej, Peter Wurz","doi":"10.1039/d4ja00392f","DOIUrl":null,"url":null,"abstract":"<p><p>Additive manufacturing has found its way into many industrial and academic areas. In this contribution, we present an additively manufactured reflectron, integrated in a space-prototype mass analyser used in laser ablation ionisation mass spectrometry. Fused deposition modelling technology was applied to produce the reflectron's ion optical system. For the insulating parts, polylactic acid filament was used as printing material, while the conductive ion optical parts were printed using polylactic acid impregnated with carbon. Measurements were conducted on a stainless steel sample (AISI 316 L, 1.4435) and NIST SRM 661 sample to validate the performance of the reflectron. We found that this system performed nominally in terms of mass resolution and detection sensitivity. This demonstrates the suitability of 3D printing for rapid prototyping in laboratory environments. The latter is of considerable importance for future space exploration missions, as the methodology allows testing of new designs time efficiently and at reduced costs.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ja00392f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing has found its way into many industrial and academic areas. In this contribution, we present an additively manufactured reflectron, integrated in a space-prototype mass analyser used in laser ablation ionisation mass spectrometry. Fused deposition modelling technology was applied to produce the reflectron's ion optical system. For the insulating parts, polylactic acid filament was used as printing material, while the conductive ion optical parts were printed using polylactic acid impregnated with carbon. Measurements were conducted on a stainless steel sample (AISI 316 L, 1.4435) and NIST SRM 661 sample to validate the performance of the reflectron. We found that this system performed nominally in terms of mass resolution and detection sensitivity. This demonstrates the suitability of 3D printing for rapid prototyping in laboratory environments. The latter is of considerable importance for future space exploration missions, as the methodology allows testing of new designs time efficiently and at reduced costs.