Challenges in measuring nanoparticles and microparticles by single particle ICP-QMS and ICP-TOFMS: size-dependent transport efficiency and limited linear dynamic range.

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Journal of Analytical Atomic Spectrometry Pub Date : 2025-02-05 DOI:10.1039/d4ja00425f
Madeleine Lomax-Vogt, Lucas M Carter, Jonas Wielinski, Stanislav Kutuzov, Gregory V Lowry, Ryan Sullivan, Paolo Gabrielli, John W Olesik
{"title":"Challenges in measuring nanoparticles and microparticles by single particle ICP-QMS and ICP-TOFMS: size-dependent transport efficiency and limited linear dynamic range.","authors":"Madeleine Lomax-Vogt, Lucas M Carter, Jonas Wielinski, Stanislav Kutuzov, Gregory V Lowry, Ryan Sullivan, Paolo Gabrielli, John W Olesik","doi":"10.1039/d4ja00425f","DOIUrl":null,"url":null,"abstract":"<p><p>While spICP-MS has been used mainly to measure nanoparticles, it can also be used to measure microparticles. The transport efficiency of nanoparticles is typically independent of their size. However, the transport efficiency of microparticles can be particle size (mass) dependent as well as being dependent on the sample uptake rate and sample introduction system used. To measure both nanoparticles and microparticles a very large linear dynamic range (where signal intensity is linearly proportional to the measured analyte(s) mass within a very short measurement time (∼300 to 500 µs, the width of signals produced by an individual particle)) is needed. Deviations from linearity could occur due to incomplete particle vaporization or from signals that are beyond the instrument's ion detection system linear dynamic range. To characterize and determine the cause of nonlinearity we measured sets of nearly monodisperse engineered SiO<sub>2</sub> particles with diameters from 500 to 5000 nm and Au particles with diameters from 60 to 1500 nm. We found that by reducing the sensitivity (up to a factor of 269×) the upper end of the linear dynamic range, in particle size that produced signal intensities that were linearly proportional to the particle (analyte) mass, could be greatly extended. Not surprisingly, reducing the sensitivity increased the minimum size detectable particle. The results are consistent with SiO<sub>2</sub> particles as large as 5000 nm being completely vaporized in the ICP.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ja00425f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

While spICP-MS has been used mainly to measure nanoparticles, it can also be used to measure microparticles. The transport efficiency of nanoparticles is typically independent of their size. However, the transport efficiency of microparticles can be particle size (mass) dependent as well as being dependent on the sample uptake rate and sample introduction system used. To measure both nanoparticles and microparticles a very large linear dynamic range (where signal intensity is linearly proportional to the measured analyte(s) mass within a very short measurement time (∼300 to 500 µs, the width of signals produced by an individual particle)) is needed. Deviations from linearity could occur due to incomplete particle vaporization or from signals that are beyond the instrument's ion detection system linear dynamic range. To characterize and determine the cause of nonlinearity we measured sets of nearly monodisperse engineered SiO2 particles with diameters from 500 to 5000 nm and Au particles with diameters from 60 to 1500 nm. We found that by reducing the sensitivity (up to a factor of 269×) the upper end of the linear dynamic range, in particle size that produced signal intensities that were linearly proportional to the particle (analyte) mass, could be greatly extended. Not surprisingly, reducing the sensitivity increased the minimum size detectable particle. The results are consistent with SiO2 particles as large as 5000 nm being completely vaporized in the ICP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
期刊最新文献
Back cover Additive manufacturing in space research: hybrid mass analyser for laser ablation ionisation mass spectrometry. Challenges in measuring nanoparticles and microparticles by single particle ICP-QMS and ICP-TOFMS: size-dependent transport efficiency and limited linear dynamic range. Novel calibration approach for particle size analysis of microplastics by laser ablation single particle-ICP-MS. An emergency radiobioassay method for Pu, Am and Cm isotopes in urine samples using tandem quadrupole ICP-MS†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1